面试之数据库分表
数据库分表) 数据切分 垂直(纵向)切分 水平(横向)切分 分库分表带来的问题 1. 事务一致性问题 2. 跨节点关联查询 join 问题 3. 跨节点分页、排序、函数问题 4. 全局主键避重问题 1. UUID 2. 结合数据库维护主键ID表 3. Snowflake分布式自增ID算法 5. 数据迁移、扩容问题 什么时候考虑切分 1. 能不切分尽量不要切分 2. 数据量过大,正常运维影响业务访问 3. 随着业务发展,需要对某些字段垂直拆分 4. 数据量快速增长 5. 安全性和可用性 案例分析 1. 用户中心业务场景 2. 水平切分方法 "根据数值范围":以主键uid为划分依据,按uid的范围将数据水平切分到多个数据库上。 "根据数值取模":也是以主键uid为划分依据,按uid取模的值将数据水平切分到多个数据库上。 3. 非uid的查询方法 1. 建立非uid属性到uid的映射关系 1. 映射关系 2. 基因法 2. 前台与后台分离 支持分库分表中间件 数据切分 关系型数据库本身比较容易成为系统瓶颈,单机存储容量、连接数、处理能力都有限。当单表的数据量达到1000W或100G以后,由于查询维度较多,即使添加从库、优化索引,做很多操作时性能仍下降严重。此时就要考虑对其进行切分了,切分的目的就在于减少数据库的负担,缩短查询时间。 数据库分布式核心内容无非就是数据切分(Sharding)