关于考拉兹猜想
考拉兹猜想,又称为3n+1猜想,角谷猜想,哈塞猜想,乌拉姆猜想或叙拉古猜想,是指对于每一个正整数,如果它是奇数,则对它乘3再加1,如果它是偶数,则对它除以2,如此循环,最终都能够得到1.考拉兹猜想,亦可以叫"奇偶归一猜想". 在1930年,德国汉堡大学的学生考拉兹,曾经研究过这个猜想,因而得名. 在1960年,日本人角谷静夫也研究过这个猜想,但这猜想到目前,仍没有任何进展. 保罗.艾狄胥就曾称,数学上尚未为此类问题提供答案,他并称会替找出答案的人奖赏500元. 考拉兹猜想,验证 例如,n = 6,根据上述数式,得出,6→3→10→5→16→8→4→2→1. (步骤中最高的数是16,共有7个步骤) 例如,n = 11,根据上述数式,得出,11→34→17→52→26→13→40→20→10→5→16→8→4→2→1. (步骤中最高的数是40,共有13个步骤) 例如,n = 27,根据上述数式,得出,27→82→41→124→62→31→94→47→142→71→214→107→322→161→484→242→121→364→182→91→274→137→412→206→103→310→155→466→233→700→350→175→526→263→790→395→1186→593→1780→890→445→1336→668→334→167→502→251→754→377→1132