时域频域

转【完整版】如果看了此文你还不懂傅里叶变换,那就过来掐死我吧

拜拜、爱过 提交于 2020-04-07 11:37:17
作 者:韩 昊 知 乎:Heinrich 微 博:@花生油工人 知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。 转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 ——更新于2014.6.6,想直接看更新的同学可以直接跳到第四章————   我保证这篇文章和你以前看过的所有文章都不同,这是 12 年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者……   这篇文章的核心思想就是:    要让读者在不看任何数学公式的情况下理解傅里叶分析。   傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。   ————以上是定场诗————   下面进入正题:  

傅里叶分析之掐死教程(完整版)

喜你入骨 提交于 2020-04-07 10:08:40
作 者:韩 昊 知 乎:Heinrich 微 博:@花生油工人 知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。 转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 ——更新于2014.6.6,想直接看更新的同学可以直接跳到第四章———— 我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ————以上是定场诗———— 下面进入正题: 抱歉,还是要啰嗦一句

傅里叶分析之掐死教程

无人久伴 提交于 2020-03-25 13:07:48
作 者:韩 昊 知 乎:Heinrich 微 博:@花生油工人 知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。 文章来源: https://zhuanlan.zhihu.com/p/19763358 转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了 . 目录 一、什么是频域 二、傅里叶级数(Fourier Series)的频谱 三、傅里叶级数(Fourier Series)的相位谱 四、傅里叶变换(Fourier Transformation) 五、宇宙耍帅第一公式:欧拉公式 六、指数形式的傅里叶变换 我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析 。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以

NR 5G SSB介绍

我怕爱的太早我们不能终老 提交于 2020-03-12 14:18:30
SSB概念 SSB包含了PSS,SSS,PBCH 同步信号和PBCH块(Synchronization Signal and PBCH block, 简称SSB),它由主同步信号(Primary Synchronization Signals, 简称PSS)、辅同步信号(Secondary Synchronization Signals, 简称SSS)、PBCH三部分共同组成。 通过PSS和SSS,UE可以获得定时信息,频偏信息,小区ID等信息;通过PBCH可以获得无线帧号,与空口进行对齐,以及调度SIB1的一些信息。 SSB特征 SSB时域上共占用4个OFDM符号,频域共占用240个子载波(20个PRB),编号为0~239,如下图所示: SSB的时频结构示意图 1、PSS位于符号0的中间127个子载波。 2、SSS位于符号2的中间127个子载波;为了保护PSS、SSS,它们的两端分别有不同的子载波Set 0。 3、PBCH位于符号1/3,以及符号2,其中符号1/3上占0~239所有子载波,符号2上占用除去SSS占用子载波及保护SSS的子载波Set 0以外的所有子载波。 4、DM-RS位于PBCH中间,在符号1/3上,每个符号上60个,间隔4个子载波,其中子载波位置偏移为:(其中物理小区总共为1008个)。 5、其中PSS、SSS、PBCH及其DM-RS占用不同的符号 PSS

泰勒展开,傅里叶变换,拉普拉斯变换和Z变换的物理意义

三世轮回 提交于 2020-02-21 06:32:23
Taylor展开 在数学中泰勒展开可以把一个函数f(x)展开成关于某一点的导数(0次到N次)的函数,这样就可以近似计算一个函数,得到在某点及其附近信息的近似描述。 傅里叶变换 傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、 光学、海洋学、结构动力学等领域都有着广泛的应用,例如在信号处理中,傅里叶变换的典 型用途是将信号分解成幅值分量和频率分量,。 傅里叶变换能将满足一定条件的某个函数表示成三角函数,正弦和/或余弦函数,或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是, 一个连续的信号可以看作是一个个小信号的叠加,从时域叠加或从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但它确有固定的周期,或者说,给定一个周期我们就能画出整个区间上的分信号,那么给定一组周期值,或频率值,,我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样

图像处理的傅里叶变换理解

时间秒杀一切 提交于 2020-02-11 22:50:49
傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法, 比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 印象中,傅立叶变换在图像处理以下几个话题都有重要作用: 1.图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘; 2.图像分割之边缘检测 提取图像高频分量 3.图像特征提取: 形状特征:傅里叶描述子 纹理特征:直接通过傅里叶系数来计算纹理特征 其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性 4.图像压缩 可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换; 傅立叶变换 傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一定存在。冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。 傅立叶变换有很多优良的性质。比如线性

贯穿时域与频域的方法——傅立叶分析

和自甴很熟 提交于 2020-01-10 03:57:24
Q1:时域与频域是什么? 时域故名思议就是随着时间的推移,我们所能直观感受的东西或事物,比如说音乐,我们听到动听的音乐,这是在时域上发生的事情。 而对于演奏者来说音乐是一些固定的音符,我们听到的音乐在频域内是一个永恒的音符,音符的个数是有限且固定的,但可以组合出无限多的乐曲。 傅立叶也告诉我们,任何周期函数都可以看作不同振幅,不同相位的正弦波的叠加。就像用音符组合出音乐一样。 贯穿时域和频域的方法之一,就是傅立叶分析,傅立叶分析又分为两个部分:傅立叶级数和傅立叶变换。 Q2:傅立叶级数是啥? 傅立叶级数指出任何周期函数都可以看作不同振幅,不同相位的正弦波的叠加。 对比傅立叶变换:傅立叶变换指出非周期的函数(函数曲线下的面积是有限的)也可以用正弦或余弦乘以加权函数的积分来表示。 说的过程大概是这样子的: 在傅立叶级数中要介绍两个概念:频谱(幅度谱),相位谱。 有了这两个东西之后我们就可以更容易理解把周期函数拆分为各个正弦函数叠加的过程了。 频谱(幅度谱) 之前我们提到了时域和频域,从不同的“域”来看可能会产生很不一样的效果,到底有多不一样呢?先上个图来看一下。 可以看出,从时域来看,我们会看到一个近似为矩形的波,而我们知道这个矩形的波可以被差分为一些正弦波的叠加。 而从频域方向来看,我们就看到了每一个正弦波的幅值,可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线

【音频处理】从时域和频域上分别改变音频的响度

半世苍凉 提交于 2019-12-26 10:02:40
时域上尝试 如原始音频时域如下: 假如将所有数据乘上5. 可以发现有些地方都“破音”了。 for ( int i = 0 ; i < N ; ++ i ) { in [ i ] = in [ i ] * 5 ; } 效果如下, 频域上的尝试 这种操作在频域中也可以做。 将时域数据通过DFT转成频域数据,然后在实数部分和虚数部分都乘以相同系数5。 for ( int i = 0 ; i < N ; ++ i ) { out [ i ] [ 0 ] * = 5 ; out [ i ] [ 1 ] * = 5 ; } 你可以发现,实际上的 效果一模一样 。 是否可以只在实数部分或者虚数部分乘系数? for ( int i = 0 ; i < kOutputSamples ; ++ i ) { out_ [ i ] [ 0 ] * = 5 ; //out_[i][1] *= 5; } 实际上的效果,可以看到相对于实际上能量发布发生不均了,并且转成时域时,数据不准确了。本来开头是由一段时间的静音的,现在也有了声音。 结论 时域上数据*N = 频域数据实数部*N and 频域数据虚数部*N 来源: CSDN 作者: mimiduck 链接: https://blog.csdn.net/mimiduck/article/details/103705043

傅里叶变换与拉普拉斯变换的物理解释及区别

一个人想着一个人 提交于 2019-12-19 09:39:56
傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话 ,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。 傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式