商务智能

建模的技巧及优化

£可爱£侵袭症+ 提交于 2020-04-08 03:29:16
建立模型应该考虑的几个问题 数 据仓库建模质量直接影响数据仓库项目的质量,甚至成败。在进行建模之前,要对数据仓库的规模、组成及模型不同部分的功能定位有明确的定义。影响数据仓库建 模的因素众多,且根据不同项目的具体情况而变化口下面的几个问题是较为通用和常见的,远远不是建立模型应该考虑的全部问题。 数据仓库的业务特点对建模的要求 1 数据仓库的数据组织是面向主题的,而不是面向报表的 数据仓库是面向业务分析的主要主题领域的,进行形成数据模型的定义。典型的主题领域主要包括: · ·顾客购买行为 · ·产品销售情况 · ·企业生产事务 · ·原料采购 · ·合作伙伴关系 · ·会计科目余额 要 对现有的报表需求进行细致的分类、分析和调整,不能为了实现单个报表而进行大量的建模工作。要根据分析的不同内容和主题对报表进行分类,明确报表中每一个 数据的定义、统计口径及不同数据之间的关系,建立在整个数据仓库内统一的数据指标的定义,将数据指标按分析主题及分析维度进行归集,从而形成面向主题的数 据模型。 例如:我们的利润表报表,当业务部门发我们一个利润表 的报表,作为需求时,我们应该进行细致的分析,最终我们确定我们面向的主题不是利润表,而是比利润表更大的一个层次的所有科目业务量的主题,这样我们在做 别的报表,例如资产负债表,现金流量表等报表时,就不用重复建模的工作了,做到了软件工程中的可重用规则。 2.

什么是大数据

ぐ巨炮叔叔 提交于 2020-04-05 23:45:23
1,什么是大数据 简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。 2,大数据最核心的价值 大数据最核心的价值就是在于对于海量数据进行存储和分析。相比起现有的其他技术而言,大数据的“廉价、迅速、优化”这三方面的综合成本是最优的。 3,大数据处理分析的六大最好工具 Apache Hadoop : Hadoop 是一个能够对大量数据进行分布式处理的软件框架。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区 服务器 ,因此它的成本比较低,任何人都可以使用。 Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点: ⒈高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。 ⒉高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。 ⒊高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。 ⒋高容错性。Hadoop能够自动保存数据的多个副本

BI(Business Intelligence)

限于喜欢 提交于 2020-03-09 12:26:34
转自:http://www.cnblogs.com/jiesin/archive/2008/06/23/1227694.html 谈谈对BI的理解,杜绝“假”“大”“空”的言辞,从BI的定义、基本技术、专业名词、实例应用及扩展等方面进行重新描述,巩固对BI的理解。 一、BI的定义 BI是Business Intelligence的英文缩写,中文解释为商务智能,用来帮助企业更好地利用数据提高决策质量的技术集合,是从大量的数据中钻取信息与知识的过程。简单讲就是业务、数据、数据价值应用的过程。用图解的方式可以理解为下图: 图(1) 这样不难看出,传统的交易系统完成的是Business到Data的过程,而BI要做的事情是在Data的基础上,让Data产生价值,这个产生价值的过程就是Business Intelligence analyse的过程。 如何实现Business Intelligence analyse的过程,从技术角度来说,是一个复杂的技术集合,它包含ETL、DW、OLAP、DM等多环节,基本过程可用下图描述。 图(2) 上图流程,简单的说就是把交易系统已经发生过的数据,通过ETL工具抽取到主题明确的数据仓库中,OLAP后生成Cube或报表,透过Portal展现给用户,用户利用这些经过分类(Classification)、聚集(Clustering)、描述和可视化

大数据案例分析

可紊 提交于 2020-02-06 19:56:52
摘自 https://www.cnblogs.com/ShaYeBlog/p/5872113.html 一、大数据分析在商业上的应用 1、体育赛事预测 世界杯期间,谷歌、百度、微软和高盛等公司都推出了比赛结果预测平台。百度预测结果最为亮眼,预测全程64场比赛,准确率为67%,进入淘汰赛后准确率为94%。现在互联网公司取代章鱼保罗试水赛事预测也意味着未来的体育赛事会被大数据预测所掌控。 “在百度对世界杯的预测中,我们一共考虑了团队实力、主场优势、最近表现、世界杯整体表现和博彩公司的赔率等五个因素,这些数据的来源基本都是互联网,随后我们再利用一个由搜索专家设计的机器学习模型来对这些数据进行汇总和分析,进而做出预测结果。”--- 百度北京大数据实验室的负责人张桐 2、股票市场预测 去年英国华威商学院和美国波士顿大学物理系的研究发现,用户通过谷歌搜索的金融关键词或许可以金融市场的走向,相应的投资战略收益高达326%。此前则有专家尝试通过Twitter博文情绪来预测股市波动。 理论上来讲股市预测更加适合美国。中国股票市场无法做到双向盈利,只有股票涨才能盈利,这会吸引一些游资利用信息不对称等情况人为改变股票市场规律,因此中国股市没有相对稳定的规律则很难被预测,且一些对结果产生决定性影响的变量数据根本无法被监控。 目前,美国已经有许多对冲基金采用大数据技术进行投资,并且收获甚丰

数据挖掘试题(150道)

a 夏天 提交于 2020-01-01 00:29:43
单选题 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A) A. 关联规则发现 B. 聚类 C. 分类 D. 自然语言处理 以下两种描述分别对应哪两种对分类算法的评价标准? (A) (a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。 (b)描述有多少比例的小偷给警察抓了的标准。 A. Precision, Recall B. Recall, Precision A. Precision, ROC D. Recall, ROC 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?© A. 频繁模式挖掘 B. 分类和预测 C. 数据预处理 D. 数据流挖掘 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B) A. 分类 B. 聚类 C. 关联分析 D. 隐马尔可夫链 什么是KDD? (A) A. 数据挖掘与知识发现 B. 领域知识发现 C. 文档知识发现 D. 动态知识发现 使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?(A) A. 探索性数据分析 B. 建模描述 C. 预测建模 D. 寻找模式和规则 为数据的总体分布建模;把多维空间划分成组等问题属于数据挖掘的哪一类任务?(B) A. 探索性数据分析 B. 建模描述 C. 预测建模 D. 寻找模式和规则

数据可视化初学者指南:定义、示例和工具

孤街浪徒 提交于 2019-12-27 04:05:53
数据可视化是信息和数据的图形表示。通过使用图表、图形和地图等可视化元素,数据可视化工具提供了一种可访问的方式来查看和理解数据中的趋势、异常值和模式。 在大数据世界中,可视化越来越成为理解每天生成的数万亿行数据的关键工具,这对于分析海量信息和做出数据驱动的决策至关重要。 一、您需要了解的有关数据可视化的知识 俗话说“一张图片胜过千言万语”。如今,在企业被来自各种数据类型以及本地的和基于云的信息所淹没的大数据时代,这句老话从来没有像现在这样切题。 筛选信息以了解哪些重要哪些不重要变得越来越困难。可视化使分析变得更加容易和快捷,能够使人一目了然地查看重要内容。而且,大多数人对视觉的响应远胜于文本: •传递到大脑的信息中有90%是视觉信息 •大脑处理视觉信息的速度是文本的6万倍 这些观点为使用数据可视化来分析和传递信息提供了强有力的依据。 为什么视觉分析很重要 良好的数据可视化对于分析数据和基于该数据做出决策至关重要。它使人们可以快速、轻松地查看和理解模式和关系,并发现如果仅用原始数字表格或电子表格不会注意到的新兴趋势。在大多数情况下,不需要专门的培训来解释图形中呈现的内容,就能实现普遍理解。 精心设计的图形不仅可以提供信息,还可以通过强大的呈现方式增强信息的影响力,吸引人们的注意力并使其保持兴趣,这是表格或电子表格无法做到的。如果你曾经盯着一个庞大的数据电子表格,却看不到趋势

第三篇:数据仓库系统的实现与使用(含OLAP重点讲解)

有些话、适合烂在心里 提交于 2019-12-25 00:09:34
第三篇:数据仓库系统的实现与使用(含OLAP重点讲解) 转载自:https://www.cnblogs.com/muchen/p/5318808.html 前言 上一篇 重点讲解了数据仓库建模,它是数据仓库开发中最核心的部分。然而完整的数据仓库系统还会涉及其他一些组件的开发,其中最主要的是ETL工程,在线分析处理工具(OLAP)和商务智能(BI)应用等。 本文将对这些方面做一个总体性的介绍(尤其是OLAP),旨在让读者对数据仓库的认识提升到一个全局性的高度。 回到顶部 创建数据仓库 数据仓库的创建方法和数据库类似,也是通过编写DDL语句来实现。在 过去,数据仓库系统大都建立在RDBMS上,因为维度建模其实也可以看做是关系建模的一种。但如今随着开源分布式数据仓库工具如Hadoop Hive,Spark SQL的兴起,开发人员往往将建模和实现分离。使用专门的建模软件进行ER建模、关系建模、维度建模,而具体实现则在Hive/Spark SQL下进行。没办法,谁让这些开源工具没有提供自带的可视化建模插件呢:-(。 话说现在的开源分布式工具都是"散兵作战",完成一个大的项目要组合N个工具,没有一个统一的开发平台。还有就是可视化效果比较差,界面很难看或者没有界面。个人建议在资金足够的情况下尽量使用商用大数据平台来开发,虽然这些商用产品广告打得多少有点夸张,但是它们的易用性做的是真好

数仓知识01_相关名词解释(英文缩写

那年仲夏 提交于 2019-12-24 03:21:23
随着大数据的到来,经常听到相关的词汇,维度、指标、BI、PV、UV等等,今天整理了这些词汇。 1. DW DW是Data Warehouse的缩写,即数据仓库。 DW要区别于普通数据库,数据仓库用于支持决策,面向分析型数据处理;而普通数据库主要服务于软件/网站,对于一致性/事物要求较高。 数据仓库是一个支持管理决策的数据集合。数据是面向主题的、集成的、不易丢失的并且是时间变量。数据仓库是所有操作环境和外部数据源的快照集合。 数据粒度 数据粒度,是指数据仓库中数据的细化和综合程度。根据数据粒度细化标准:细化程度越高,粒度越小;细化程度越低,粒度越大。 2. 数据集市(DM) 数据仓库是一个支持管理决策的数据集合。数据是面向主题的、集成的、不易丢失的并且是时间变量。数据仓库是所有操作环境和外部数据源的快照集合。 CRM 客户关系管理(Customer Relationship Management),数据仓库是以数据库技术为基础但又与传统的数据库应用有着本质区别的新技术,CRM就是基于数据仓库技术的一种新应用。但是,从商业运作的角度来讲,CRM其实应该算是一个古老的"应用"了。比如,酒店对客人信息的管理,如果某个客人是某酒店的老主顾,那么该酒店很自然地会知道这位客人的某些习惯和喜好,如是否喜欢靠路边,是否吸烟,是否喜欢大床,喜欢什么样的早餐,等等。当客人再次光临时,不用客人自己提出来

数据仓库系列之元数据管理

时光总嘲笑我的痴心妄想 提交于 2019-11-28 13:21:06
元数据(Meta Data),主要记录数据仓库中模型的定义、各层级间的映射关系、监控数据仓库的数据状态及 ETL 的任务运行状态。一般会通过元数据资料库(Metadata Repository)来统一地存储和管理元数据,其主要目的是使数据仓库的设计、部署、操作和管理能达成协同和一致。元数据是数据仓库管理系统的重要组成部分,元数据管理是企业级数据仓库中的关键组件,贯穿了数据仓库的整个生命周期,使用元数据驱动数据仓库的开发,使数据仓库自动化,可视化。   构建数据仓库的主要步骤之一是 ETL。这时元数据将发挥重要的作用,它定义了源数据系统到数据仓库的映射、数据转换的规则、数据仓库的逻辑结构、数据更新的规则、数据导入历史记录以及装载周期等相关内容。数据抽取和转换的专家以及数据仓库管理员正是通过元数据高效地构建数据仓库。 用户在使用数据仓库时,通过元数据访问数据,明确数据项的含义以及定制报表。数据仓库的规模及其复杂性离不开正确的元数据管理,包括增加或移除外部数据源,改变数据清洗方法,控制出错的查询以及安排备份等。 一、元数据类型 ​  元数据可分为技术元数据、业务元数据和管理过程元数据。   1、 技术元数据为开发和管理数据仓库的 IT 人员使用,它描述了与数据仓库开发、管理和维护相关的数据,包括数据源信息、数据转换描述、数据仓库模型、数据清洗与更新规则、数据映射和访问权限等。   2、

Hive的基本介绍(一)

岁酱吖の 提交于 2019-11-27 01:21:42
01 Hive的基本介绍 1、hive产生的原因 · a) 方便对文件及数据的元数据进行管理,提供统一的元数据管理方式 ​ b) 提供更加简单的方式来访问大规模的数据集,使用SQL语言进行数据分析 2、hive是什么? The Apache Hive ™ data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage using SQL. Structure can be projected onto data already in storage. A command line tool and JDBC driver are provided to connect users to Hive. ​ Hive经常被大数据企业用作企业级数据仓库。 ​ Hive在使用过程中是使用SQL语句来进行数据分析,由SQL语句到具体的任务执行还需要经过解释器,编译器,优化器,执行器四部分才能完成。 ​ (1)解释器:调用语法解释器和语义分析器将SQL语句转换成对应的可执行的java代码或者业务代码 ​ (2)编译器:将对应的java代码转换成字节码文件或者jar包 ​ (3)优化器