深度学习中的Attention机制
1.深度学习的seq2seq模型 从rnn结构说起 根据输出和输入序列不同数量rnn可以有多种不同的结构,不同结构自然就有不同的引用场合。如下图, one to one 结构,仅仅只是简单的给一个输入得到一个输出,此处并未体现序列的特征,例如图像分类场景。 one to many 结构,给一个输入得到一系列输出,这种结构可用于生产图片描述的场景。 many to one 结构,给一系列输入得到一个输出,这种结构可用于文本情感分析,对一些列的文本输入进行分类,看是消极还是积极情感。 many to many 结构,给一些列输入得到一系列输出,这种结构可用于翻译或聊天对话场景,对输入的文本转换成另外一些列文本。 同步 many to many 结构,它是经典的rnn结构,前一输入的状态会带到下一个状态中,而且每个输入都会对应一个输出,我们最熟悉的就是用于字符预测了,同样也可以用于视频分类,对视频的帧打标签。 seq2seq 在 many to many 的两种模型中,上图可以看到第四和第五种是有差异的,经典的rnn结构的输入和输出序列必须要是等长,它的应用场景也比较有限。而第四种它可以是输入和输出序列不等长,这种模型便是seq2seq模型,即Sequence to Sequence。它实现了从一个序列到另外一个序列的转换