scipy

大佬整理的Python数据可视化时间序列案例,建议收藏(附代码)

て烟熏妆下的殇ゞ 提交于 2020-08-08 05:33:11
前言 本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。 时间序列 1、时间序列图 时间序列图用于可视化给定指标如何随时间变化。在这里,您可以了解1949年至1969年之间的航空客运流量如何变化。 # Import Data df = pd.read_csv( ' https://github.com/selva86/datasets/raw/master/AirPassengers.csv ' ) # Draw Plot plt.figure(figsize=(16,10), dpi= 80 ) plt.plot( ' date ' , ' traffic ' , data=df, color= ' tab:red ' ) # Decoration plt.ylim(50, 750 ) xtick_location = df.index.tolist()[::12 ] xtick_labels = [x[-4:] for x in df.date.tolist()[::12 ]] plt.xticks(ticks =xtick_location, labels=xtick_labels, rotation=0, fontsize=12, horizontalalignment= ' center ' ,

Is `built-in method numpy.core._multiarray_umath.implement_array_function` a performance bottleneck?

久未见 提交于 2020-08-07 07:54:23
问题 I'm using numpy v1.18.2 in some simulations, and using inbuilt functions such as np.unique , np.diff and np.interp . I'm using these functions on standard objects, i.e lists or numpy arrays. When I checked with cProfile , I saw that these functions make a call to an built-in method numpy.core._multiarray_umath.implement_array_function and that this method accounts for 32.5% of my runtime! To my understanding this is a wrapper that performs some checks to make sure the that the arguments

pip failing to build wheels for scipy

旧街凉风 提交于 2020-08-07 07:50:05
问题 I've just downloaded the new python 3.8 and I'm trying to install the scipy package using the following: pip3.8 install scipy However the build fails with the following error: **Failed to build scipy** **ERROR: Could not build wheels for scipy which use PEP 517 and cannot be installed directly** How can I install this using pip ? I tried using the --no-binary version: pip3.8 install --no-binary :all: scipy but ended up with an even scarier error: **ERROR: Command errored out with exit status

pip failing to build wheels for scipy

≡放荡痞女 提交于 2020-08-07 07:45:50
问题 I've just downloaded the new python 3.8 and I'm trying to install the scipy package using the following: pip3.8 install scipy However the build fails with the following error: **Failed to build scipy** **ERROR: Could not build wheels for scipy which use PEP 517 and cannot be installed directly** How can I install this using pip ? I tried using the --no-binary version: pip3.8 install --no-binary :all: scipy but ended up with an even scarier error: **ERROR: Command errored out with exit status

What are the arguments for scipy.stats.uniform?

与世无争的帅哥 提交于 2020-08-06 08:00:23
问题 I'm trying to create a uniform distribution between two numbers (lower bound and upper bound) in order to feed it to sklearn's ParameterSampler. I am using scipy.stats.uniform in the following format: from scipy.stats import uniform params = ParameterSampler({'bandwidth':uniform(5,50)}, 20) But when I get the random selections of the 'bandwidth' parameter, they are not all between 5 and 50. Some of them are bigger than 50 by a bit. So my question is what do the arguments in scipy.stats

开启天文之路的 4 个 Python 工具

本小妞迷上赌 提交于 2020-08-04 17:54:51
使用 NumPy、SciPy、Scikit-Image 和 Astropy 探索宇宙 天文学与 Python 对科学界而言,尤其是对天文学界来说,Python 是一种伟大的语言工具。各种软件包,如 NumPy 、 SciPy 、 Scikit-Image 和 Astropy ,(仅举几例) ,都充分证明了 Python 对天文学的适用性,而且有很多用例。(NumPy、Astropy 和 SciPy 是 NumFOCUS 提供资金支持的项目;Scikit-Image 是个隶属项目)。我在十几年前脱离天文研究领域,成为了软件开发者之后,对这些工具包的演进一直很感兴趣。我的很多前天文界同事在他们的研究中,使用着前面提到的大部分甚至是全部工具包。以我为例,我也曾为位于智利的超大口径望远镜(VLT)上的仪器编写过专业天文软件工具包。 最近令我吃惊的是,Python 工具包竟然演进到如此好用,任何人都可以轻松编写 数据还原 data reduction 脚本,产生出高质量的数据产品。天文数据易于获取,而且大部分是可以公开使用的,你要做的只是去寻找相关数据。 比如,负责 VLT 运行的 ESO,直接在他们的网站上提供数据下载服务,只要访问 www.eso.org/UserPortal 并在首页创建用户就可以享有数据下载服务。如果你需要 SPHERE 数据

Py之imblearn:imblearn/imbalanced-learn库的简介、安装、使用方法之详细攻略

只愿长相守 提交于 2020-08-04 17:43:42
Py之imblearn:imblearn/imbalanced-learn库的简介、安装、使用方法之详细攻略 目录 imblearn/imbalanced-learn库的简介 imblearn/imbalanced-learn库的安装 imblearn/imbalanced-learn库的使用方法 imblearn/imbalanced-learn库的简介 imblearn/imbalanced-learn是一个python包,它提供了许多重采样技术,常用于显示强烈类间不平衡的数据集中。它与scikit learn兼容,是 scikit-learn-contrib 项目的一部分。 在python3.6+下测试了imbalanced-learn。依赖性要求基于上一个scikit学习版本: scipy(>=0.19.1) numpy(>=1.13.3) scikit-learn(>=0.22) joblib(>=0.11) keras 2 (optional) tensorflow (optional) imblearn/imbalanced-learn库的安装 pip install imblearn pip install imbalanced-learn pip install -U imbalanced-learn conda install -c conda-forge

AttributeError: module 'scipy.misc' has no attribute 'toimage'

孤人 提交于 2020-08-02 07:41:43
问题 While executing the below code: scipy.misc.toimage(output * 255, high=255, low=0, cmin=0, cmax=255).save( params.result_dir + 'final/%5d_00_%d_out.png' % (test_id, ratio)) I get the below error: AttributeError: module 'scipy.misc' has no attribute 'toimage' I tried installing Pillow as mentioned here: scipy.misc module has no attribute imread? But the same error persisted. Please help. Thanks. 回答1: The scipy.misc.toimage() function was deprecated in Scipy 1.0.0, and was completely removed in

AttributeError: module 'scipy.misc' has no attribute 'toimage'

霸气de小男生 提交于 2020-08-02 07:41:33
问题 While executing the below code: scipy.misc.toimage(output * 255, high=255, low=0, cmin=0, cmax=255).save( params.result_dir + 'final/%5d_00_%d_out.png' % (test_id, ratio)) I get the below error: AttributeError: module 'scipy.misc' has no attribute 'toimage' I tried installing Pillow as mentioned here: scipy.misc module has no attribute imread? But the same error persisted. Please help. Thanks. 回答1: The scipy.misc.toimage() function was deprecated in Scipy 1.0.0, and was completely removed in

ValueError: negative dimensions are not allowed using pandas pivot_table

蹲街弑〆低调 提交于 2020-08-02 04:33:48
问题 I am trying to make item-item collaborative recommendation code. My full dataset can be found here. I want the users to become rows, items to become columns, and ratings to be the values. My code is as follows: import pandas as pd import numpy as np file = pd.read_csv("data.csv", names=['user', 'item', 'rating', 'timestamp']) table = pd.pivot_table(file, values='rating', index=['user'], columns=['item']) My data is as follows: user item rating timestamp 0 A2EFCYXHNK06IS 5555991584 5 978480000