MSE 均方误差(Mean Square Error) RMSE 均方根误差(Root Mean Square Error) 其实就是MSE加了个根号,这样数量级上比较直观,比如RMSE=10,可以认为回归效果相比真实值平均相差10 MAE 平均绝对误差(Mean Absolute Error) MAPE 平均绝对百分比误差(Mean Absolute Percentage Error) SMAPE 对称平均绝对百分比误差(Symmetric Mean Absolute Percentage Error) scikit-learn中实现: # MSE, MAE, R2, RMSE法一 from sklearn.metrics import mean_squared_error #MSE from sklearn.metrics import mean_absolute_error #MAE from sklearn.metrics import r2_score#R 2 #调用 mean_squared_error(y_test,y_predict) mean_absolute_error(y_test,y_predict) np.sqrt(mean_squared_error(y_test,y_predict)) # RMSE r2_score(y_test,y_predict)