驱动电路

输入阻抗和输出阻抗

醉酒当歌 提交于 2020-04-01 09:07:51
shoecat 发表于 2007-10-4 11:03:00 5 推荐 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源 U ,测量输入端的电流 I ,则输入阻抗 Rin 就是 U/I 。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑 阻抗匹配问题 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为 0 ,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意 但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻 r 的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻 r ,就是(信号源 / 放大器输出 / 电源)的内阻了。当这个电压源给负载供电时,就会有电流 I 从这个负载上流过

H桥电机驱动原理与应用

倖福魔咒の 提交于 2020-03-15 07:40:20
本文的内容是要告诉大家什么是H桥以及它如何是工作的。 H桥电机驱动原理与应用 原著:吉姆布朗 1998年4月 整理上传:鲍勃乔丹 2002年9月 翻译:韦文潮 2007年12月 我们首先来看马达是如何转动的呢?举个例子:你手里拿着一节电池,用导线将马达和电池两端对接,马达就转动了;然后如果你把电池极性反过来会怎么样呢?没有错,马达也反着转了。 OK,这个是最基本的了。现在假设你想用一块指甲盖大小的微控制芯片(MCU)。你又如何控制马达的呢?首先,你手上有一个固态的状态开关——一个晶体管——来控制马达的开关。 提示:如果你用继电器连接这些电路的时候,要在继电器线圈两端并一个二极管。这是为了保护电路不被电感的反向电动势损坏。二极管的正极(箭头)要接地,负极要接在MCU连接继电器线圈的输出端上。 电路连接好后,你可以用一个逻辑输出的信号来控制马达了。高电平(逻辑1)让继电器导通,马达转动;低电平(逻辑0)让继电器断开,马达停止。 在电路相同的情况下,把马达的“极性”反过来接,我们可以控制马达的翻转和停止。 问题来了:如果我们要同时需要马达能够正转好反转,怎么办?难道每次都要把马达的连线反过来接? 我们先来看另一个概念:马达速度。当我们在其中一种状态下,频繁的切换开关状态的时候,马达的转速就不再是匀速,而是变化的了,相应的扭矩也会改变。通常反应出来的是马达速度的变化。

三极管和MOS管驱动电路的正确用法

穿精又带淫゛_ 提交于 2020-03-01 22:10:44
1 三极管和MOS管的基本特性 三极管是电流控制电流器件,用基极电流的变化控制集电极电流的变化。有NPN型三极管(简称P型三极管)和PNP型三极管(简称N型三极管)两种,符号如下: MOS管是电压控制电流器件,用栅极电压的变化控制漏极电流的变化。有P沟道MOS管(简称PMOS)和N沟道MOS管(简称NMOS),符号如下(此处只讨论常用的增强型MOS管): 2 三极管和MOS管的正确应用 (1)P型三极管,适合射极接GND集电极接负载到VCC的情况。 只要基极电压高于射极电压(此处为GND)0.7V,P型三极管即可开始导通。 基极用高电平驱动P型三极管导通(低电平时不导通);基极除限流电阻外,更优的设计是,接下拉电阻10-20k到GND,使基极控制电平由高变低时,基极能够更快被拉低,P型三极管能够更快更可靠地截止。 (2)N型三极管,适合射极接VCC集电极接负载到GND的情况。 只要基极电压低于射极电压(此处为VCC)0.7V,N型三极管即可开始导通。 基极用低电平驱动N型三极管导通(高电平时不导通);基极除限流电阻外,更优的设计是,接上拉电阻10-20k到VCC,使基极控制电平由低变高时,基极能够更快被拉高,N型三极管能够更快更可靠地截止。 所以,如上所述 对NPN三极管来说,最优的设计是,负载R12接在集电极和VCC之间。不够周到的设计是,负载R12接在射极和GND之间。

说说M451例程讲解之LED

走远了吗. 提交于 2020-01-12 23:21:42
/**************************************************************************//** * @file main.c * @version V3.00 * $Revision: 3 $ * $Date: 15/09/02 10:03a $ * @brief Demonstrate how to set GPIO pin mode and use pin data input/output control. 演示如何设置GPIO引脚模式并使用引脚数据输入/输出控制。 * @note * Copyright (C) 2013~2015 Nuvoton Technology Corp. All rights reserved. * ******************************************************************************/ #include "stdio.h" #include "M451Series.h" #include "NuEdu-Basic01.h" #define PLL_CLOCK 72000000 void SYS_Init(void) { /*----------------------------------------------

PWM是如何调节直流电机转速的?电机正反转的原理又是怎样的?

让人想犯罪 __ 提交于 2019-12-18 04:03:13
电机是重要的执行机构,可以将电转转化为机械能,从而驱动北控设备的转动或者移动,在我们的生活中应用非常广泛。例如,应用在电动工具、电动平衡车、电动园林工具、儿童玩具中。直流电机的实物图如下图所示。 1-直流电机实物图 对于普通的直流电机,在其两个电极上接上合适的直流电源后,电机就可以满速转动,电源反接后,电机就反向转动。但是在实际应用中,我们需要电机工作在不同的转速下,该如何操作呢? 1 直流电机的调速原理 我们可以做这样的实验,以24V直流电机为例,在电机两端接上24V的直流电源,电机会以满速转动,如果将24V电压降至2/3即16V,那么电机就会以满速的2/3转速运转。由此可知,想要调节电机的转速,只需要控制电机两端的电压即可。 以三极管作为驱动器件驱动小功率的电机,其电路原理图如下图所示。电机作为负载接在三极管的集电极上,基极由单片机控制。 2-直流电机调速原理图 当单片机输出高电平时,三极管导通,使得电机得电,从而满速运行;当单片机输出低电平时,三极管截止,电机两端没有电压,电机停止转动。那如何使电机两端的电压发生变化,进而控制电机的转速呢? 只要单片机输出占空比可调的方波,即PWM信号即可控制电机两端的电压发生变化,从而实现电机转速的控制。 2 PWM信号调速的原理 所谓PWM,就是脉冲宽度调制技术,其具有两个很重要的参数:频率和占空比。频率,就是周期的倒数;占空比

上拉电阻

爷,独闯天下 提交于 2019-12-17 18:08:35
(一)上拉电阻: 1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。 2、OC门电路必须加上拉电阻,才能使用。 3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。 4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。 5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。 6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。 7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。 (二)上拉电阻阻值的选择原则包括: 1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。 2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。 3、对于高速电路,过大的上拉电阻可能边沿变平缓。综合考虑 以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理 (三)对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素: 1. 驱动能力与功耗的平衡。以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。 2. 下级电路的驱动需求

LED驱动电路

99封情书 提交于 2019-12-17 01:49:01
一般,5mm LED正向电压为2V,工作电流20mA。MCU的I/O pin一般不适合直接点亮LED。以STM32F303xE为例,Datasheet给出如下电流特性: VDD输入电流总和最大160mA 单个VDD pin输入电流最大100mA 单个I/O pin最大电流25mA 所有I/O pin电流总和最大80mA 所以要通过驱动电路来控制LED。下图为使用NPN晶体管实现的LED驱动电路: 2N3904是一种易得的小信号三极管。c极电流Ic即LED工作电流 LED分压电阻RL的阻值用压降除以Ic即可得到:RL = (5V - 2V) / 20mA = 150 ohm b极电流由电流增益hFE和Ic计算得到,hFE可查晶体管Datasheet得知:Ib = Ic / hFE = 20mA / 100 = .2mA 为确保b极电流达到饱和,将它乘以一个因子3,因此:Ib = .2mA x 3 = .6mA 于是b极电阻RB便可计算出来:RB = 3.3V / Ib = 3.3V / .6mA = 5.5 k 利用我手上现有的元件,RL=200 ohm,RB=10k,实测并计算得到如下数据: RL压降3V RB压降2.5V Ic = (5V - 3V) / 200 ohm = 15mA Ib = 2.5V / 10k = .25mA hFE = Ic / Ib = 15mA /

直流电机控制系统

浪尽此生 提交于 2019-12-10 09:52:40
直流电机控制系统 第一部分 课程设计概述 1.1 课程设计的目的与任务 1.2 课程设计题目 1.3 设计功能要求 1.4 课程设计的内容与要求 1.5 实验仪器设备及器件 第二部分 设计方案工作原理 2.1 预期实现目标定位 2.2 技术方案分析 2.2.1系统框图 2.2.2电路工作原理 2.2.3控制算法原理 2.3 功能指标实现方法 2.3.1 实现方案分析 2.3.2 基本模块原理 第三部分 核心部件电路设计 3.1 关键器件性能分析 3.2 电路工作原理 3.3 电路驱动接口说明 第四部分 系统软件设计分析 4.1 系统总体工作流程 4.2 程序设计思路 4.3 关键模块程序清单 4.3.1编码器测速 4.3.2五向按键检测 4.3.3 OLED显示 4.3.4 PID控制 4.4 调试分析 4.4.1 总体说明 4.4.2 PID算法调节分析 第五部分 心得体会 第六部分 附录 Ⅰ 参考文献 Ⅱ 电路原理图 Ⅲ 核心源代码 本次应用系统课程设计主要涉及 基于STM32编程 、 直流电机的驱动 和 PID控制 的应用,根据课程设计要求完成了基于PID算法的简单直流电机调速练习,本系统目前还可以继续完善,有相当多的功能可以继续添加。另外,对于PID算法的调参问题一直是困扰做项目的人,后来我们采用Matlab&Simulink仿真的方式,大大缩短了参数整定的时间

EMC整改报告-待续

最后都变了- 提交于 2019-12-06 06:04:34
EMC 整改报告 一、 EMC 概述 1. EMC 设计主要针对 EMI+EMS ,常见的 EMI 测试包括电源线的传导骚扰( CE )和辐射发射( RE )测试, EMS 测试包括: ESD 、电源线的 EFT 、电源线的雷击和浪涌测试、电源线的抗扰度测试 ; 三要素是干扰源、耦合途径、敏感器件;主要对策:疏(滤波、接地)和堵(屏蔽) 2. 用高频的视角看问题 3. 所有信号都是从地流回去的 4. 共模干扰与差模干扰: 共模干扰往往是指同时加载在各个输入信号接口段的共有的信号干扰。共模干扰是在信号线与地之间传输,属于非对称性干扰。共模干扰好比两个人同时向前或者向后推你,于此相对的差模干扰则是一前一后在拉你。 二、 EMC 测试模型: 1. 辐射发射测试: 一般都是先将水平和垂直做一遍测试,这时主要是测峰值,然后在针对峰值读点,读点测的是平均值,TUV等认证时也是读点; 2. 传导骚扰测试: 2.1 需要的仪器:接收机、 LISN 网络(三相、单相)、参考接地,一个重要的条件是一个 2m*2m 以上面积的参考地平面,并超出 EUT 边界至少 0.5m; 一般在屏蔽室内进行,如下图 2.2 电源口传导骚扰测试的拓扑图如下 , 此时构成了一个环路,成为了天线,此处应注意电源线和接地线之间的面积,并且尽量将 EUT 的接地线接到 LISN 上,而不要就近接到参考地金属板上( 50R

电路IO驱动能力

末鹿安然 提交于 2019-12-06 03:29:52
驱动能力 电源驱动能力 -> 输出电流能力 -> 输出电阻 指输出电流的能力,比如芯片的IO在高电平时的最大输出电流是4mA -> 该IO口的驱动驱动能力为4mA 负载过大(小电阻) -> 负载电流超过其最大输出电流 -> 驱动能力不足 -> 输出电压下降 -> 逻辑电路无法保持高电平 -> 逻辑混乱 XX 一般说驱动能力不足是指某个IO口/引脚无法直接用高电平驱动某个外设,需要加三级管(驱动脚由三极管的发射极或集电极提供)或者MOS管。 IO与输出电流 单片机的IO口用程序控制,输出0/1 -> 在引脚形成高低电平。 但程序不能控制引脚的输出电流 -> 输出电流很大程度取决于引脚上的外接器件。 单片机输出低电平时驱动能力ok,输出高电平时驱动能力就不ok了。 拉电流 sourcing current 高电平输出时,一般是输出端对负载提供电流,其提供电流的数值叫“拉电流” 对一个端口而言,如果电流方向是向其外部流动的则是“拉电流”,比如一个IO通过一个电阻和一个LED连至GND,当该IO输出为逻辑1时能不能点亮LED,去查该 器件手册中sourcing current参数。 灌电流 sink current 低电平输出时,一般是输出端要吸收负载的电流,其吸收电流的数值叫“灌电流”。 对一个端口而言,如果电流方向是向其内部流动的则是“灌电流”