传统机器学习和前沿深度学习推荐模型演化关系介绍
本文来自王喆老师《深度学习推荐系统》一书,如果有一定的推荐系统基础的话,建议读一读,当然如果只是初学者的话还是建议从基础的开始学起,比如《推荐系统开发实战》。 传统机器学习推荐模型演化 简单讲,传统推荐模型的发展主要由以下几部分组成 协同过滤算法族 即上图中蓝色部分,协同过滤是推荐系统的首选模型,从物品相似度和用户相似角度出发,衍生出了ItemCF和UserCF两种算法。为了使协同过滤衍生出矩阵分解模型(Matrix Factorization,MF),并发展出矩阵分解的各分支模型。 逻辑回归模型族 协同过滤仅利用用户和物品之间显式或者隐式反馈信息,逻辑回归能够利用和融合更多用户、物品和上下文特征。从LR模型衍生出的各种模型同样“枝繁叶茂”,包括增强了非线性能力的大规模分片线性模型(Large Scale Piece-wise Linear Model,LS-PLM),由逻辑回归发展出来的FM模型,以及与多种不同模型配合使用后的组合模型等。 LS-PLM模型是阿里巴巴曾经使用的主流推荐模型,本质上,LS-PLM可以看作是对逻辑回归的自然推广,他在逻辑回归的基础上采用了分而治之的思路,先对样本进行分片,而在样本分片中应用逻辑回归进行CTR预估。 比如在电商领域要预估女性受众点击女装广告的CTR,那么显然我们不希望把男性用户点击数码类的样本数据也考虑进来