飞桨实战笔记:自编写模型如何在服务器和移动端部署
作为深度学习小白一枚,从一开始摸索如何使用深度学习框架,怎么让脚本跑起来,到现在开始逐步读懂论文,看懂模型的网络结构,按照 飞桨 官方文档进行各种模型训练和部署,整个过程遇到了无数问题。非常感谢 飞桨 开源社区的大力支持,并热情答复我遇到的各种问题,使得我可以快速上手。特整理本篇学习笔记,以此回馈网友们的无私付出。大家都共享一点点,一起为深度学习的推进添砖加瓦(哈哈,非常正能量,有木有!) 这篇文章详细记录了如何使用百度深度学习平台—— 飞桨 进行SSD目标检测模型的训练、以及如何将模型部署到服务器和移动端。文末给出了笔者认为非常有用的资料链接。 下载安装命令 ## CPU版本安装命令 pip install -f https://paddlepaddle.org.cn/pip/oschina/cpu paddlepaddle ## GPU版本安装命令 pip install -f https://paddlepaddle.org.cn/pip/oschina/gpu paddlepaddle-gpu 本文的代码基于百度AI Studio官方示例代码,并能够在 飞桨 1.7.1上跑通,Python版本是3.7。 SSD模型介绍 如果你对经典的CNN模型比较熟悉的话,那么SSD也并不难理解。SSD大体上来说是 将图片分为6种不同大小的网格,找到目标中心的落点,确定物体的位置