耦合电路

功率放大器在电容耦合型无线电能传输系统中的应用

馋奶兔 提交于 2020-03-31 10:29:17
实验名称:考虑接地情况的电容耦合型无线电能传输系统 研究方向:无线电能传输 实验内容:在系统电路参数确定的情况下,改变四块金属板的接地情况,观察系统输出性能的变化,即(1)不同接地模式下,输出负载电压与负载阻值的关系;(2)在确定接地模式下,负载输出电压与未接地金属板对地电容的关系。 测试目的:验证理论分析和仿真结果的正确性 测试设备:信号发生器Agilent 33220A,功率放大器Aigtek ATA-122D,四块300mm*300mm铝板,电阻若干(0.5kR/1kR/2kR) 放大器型号:Aigtek ATA-122D 实验过程: 如图所示为电容耦合型无线电能传输系统实验平台,其中包括一台信号发生器Agilent33220A,用以产生高频信号源;一台宽带功率放大器Aigtek ATA-122D,用以放大信号发生器的输出信号;两对300mm*30mm大小的铝制金属板以及若干电阻(0.5kR,1kR,2kR)。金属板1和3之间的垂直距离为10mm,金属板1和2之间的水平距离为100mm。在实验中,金属板1和2接功率放大器的输出,金属板3和4接电阻。金属板1和2之间的电压设置为20Vrms@1MHz。为了避免任何金属板通过测量设备直接接地,信号发生器与功率放大器均由隔离变压器供电,同时实验过程中的示波器选用手持式示波器Keysight U1620A。当实验需要时

电路板设计知多少?不得不防的PCB布局陷阱

孤街浪徒 提交于 2020-02-26 12:40:59
工业、科学和医疗射频(ISM-RF)产品的无数应用案例表明,这些产品的印制板(PCB)布局很容易出现各种缺陷。人们时常发现相同IC安装到两块不同电路板上,所表现的性能指标会有显著差异。工作条件、谐波辐射、抗干扰能力,以及启动时间等等诸多因素的变化,都能说明电路板布局在一款成功设计中的重要性。 本文罗列了各种不同的设计疏忽,探讨了每种失误导致电路故障的原因,并给出了如何避免这些设计缺陷的建议。本文以FR-4电介质、厚度0.0625in的双层PCB为例,电路板底层接地。工作频率介于315MHz到915MHz之间的不同频段,Tx和Rx功率介于-120dBm至+13dBm之间。表1列出了一些可能出现的PCB布局问题、原因及其影响。 表1. 典型的PCB布局问题和影响 其中大多数问题源于少数几个常见原因,我们将对此逐一讨论。 电感方向 当两个电感(甚至是两条PCB走线)彼此靠近时,将会产生互感。第一个电路中的电流所产生的磁场会对第二个电路中的电流产生激励(图1)。这一过程与变压器初级、次级线圈之间的相互影响类似。当两个电流通过磁场相互作用时,所产生的电压由互感LM决定: 式中,YB是向电路B注入的误差电压,IA是在电路A作用的电流1。LM对电路间距、电感环路面积(即磁通量)以及环路方向非常敏感。因此,紧凑的电路布局和降低耦合之间的最佳平衡是正确排列所有电感的方向。 图1.

一份PCB布局技巧大全,“百分百”助力通关步入专业领域神殿!

核能气质少年 提交于 2020-02-26 07:35:36
高速模拟信号链设计中PCB的布局布线在不同的“攻城狮”眼中,考虑的选项也不尽相同;但无论什么情况下,设计者都应该尽量消除“最佳做法”的误差,而不是去计较布局布线的细节。作为一名优秀的设计师,哪些技巧是必要掌握的呢? 从裸露焊盘说起 一般的设计师在设计时常常可能会忽视裸露焊盘(EPAD),但它对充分发挥信号链的性能以及器件充分散热却是非常重要的。 ADI公司称裸露焊盘为引脚0,它是目前大多数器件下方的焊盘。同时它也是一个重要的连接——芯片的所有内部接地都是通过它才能连接到器件下方的中心点。不知大家是否发现一个有趣的现象:目前许多转换器和放大器中都缺少接地引脚,原因就在于裸露焊盘。关键是要将此引脚妥善固定(即焊接)至PCB,实现牢靠的电气和热连接。 如果此连接不牢固,就会发生混乱;换言之,这样的设计可能无效。 实现最佳连接 那们接下来,又该如何通过裸露焊盘实现最佳电气和热连接呢?主要有三个步骤—— 首先,为了“与所有接地和接地层形成密集的热连接,从而达到快速散热”的目的,应该在可能的情况下 尽量在各PCB层上复制裸露焊盘 。此步骤与高功耗器件及具有高通道数的应用相关。 在电气方面,这将为所有接地层提供良好的等电位连接;甚至还可以在底层复制裸露焊盘(见图1),可以用作去耦散热接地点和安装底侧散热器的地方。 其次,将裸露焊盘分割成如同棋盘一样的多个相同部分

图文详解EMC的PCB设计技术

时光总嘲笑我的痴心妄想 提交于 2020-02-25 17:14:56
除了元器件的选择和电路设计之外,良好的印制电路板(PCB)设计在电磁兼容性中也是一个非常重要的因素。PCB EMC设计的关键,是尽可能减小回流面积,让回流路径按照设计的方向流动。最常见返回电流问题来自于参考平面的裂缝、变换参考平面层、以及流经连接器的信号。跨接电容器或是去耦合电容器可能可以解决一些问题,但是必需要考虑到电容器、过孔、焊盘以及布线的总体阻抗。本讲将从PCB的分层策略、布局技巧和布线规则三个方面,介绍EMC的PCB设计技术。 PCB分层策略 电路板设计中厚度、过孔制程和电路板的层数不是解决问题的关键,优良的分层堆叠是保证电源汇流排的旁路和去耦、使电源层或接地层上的瞬态电压最小并将信号和电源的电磁场屏蔽起来的关键。从信号走线来看,好的分层策略应该是把所有的信号走线放在一层或若干层,这些层紧挨著电源层或接地层。对於电源,好的分层策略应该是电源层与接地层相邻,且电源层与接地层的距离尽可能小,这就是我们所讲的“分层”策略。下面我们将具体谈谈优良的PCB分层策略。 1.布线层的投影平面应该在其回流平面层区域内。布线层如果不在其回流平面层地投影区域内,在布线时将会有信号线在投影区域外,导致“边缘辐射”问题,并且还会导致信号回路面积地增大,导致差模辐射增大。 2.尽量避免布线层相邻的设置。因为相邻布线层上的平行信号走线会导致信号串扰,所以如果无法避免布线层相邻

差分信号的理解

六月ゝ 毕业季﹏ 提交于 2020-02-22 12:08:34
差分信号( Differential Signal ) 转自 EDN ,对差分信号理解得比较的文章,供大家参考 差分信号( Differential Signal )在高速电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分结构设计,什么另 它这么倍受青睐呢?在 PCB 设计中又如何能保证其良好的性能呢? 带着这两个问题,我们进行下一部分的讨论。 何为差分信号?通俗地说,就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态 “0” 还是 “1” 。而承载差分信号的那一对走线就称为差分走线。 差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面: a. 抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。 b. 能有效抑制 EMI ,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。 c. 时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的 LVDS ( low voltage differential signaling

差分信号(Differential Signal)

纵饮孤独 提交于 2020-02-22 12:08:04
差分信号(Differential Signal )在高速电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分结构设计,什么另 它这么倍受青睐呢?在 PCB 设计中又如何能保证其良好的性能呢? 带着这两个问题,我们进行下一部分的讨论。 何为差分信号?通俗地说,就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态“0” 还是“1” 。而承载差分信号的那一对走线就称为差分走线。 差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面: a. 抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。 b. 能有效抑制 EMI ,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。 c. 时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的 LVDS (low voltage differential signaling )就是指这种小振幅差分信号技术。 对于 PCB 工程师来说,最关注的还是如何确保在实际走线中能完全发挥差分走线的这些优势

功率放大器在电容耦合型无线电能传输系统中的应用

我们两清 提交于 2020-02-21 19:16:00
实验名称:考虑接地情况的电容耦合型无线电能传输系统 研究方向:无线电能传输 实验内容:在系统电路参数确定的情况下,改变四块金属板的接地情况,观察系统输出性能的变化,即(1)不同接地模式下,输出负载电压与负载阻值的关系;(2)在确定接地模式下,负载输出电压与未接地金属板对地电容的关系。 测试目的:验证理论分析和仿真结果的正确性 测试设备:信号发生器Agilent 33220A,功率放大器Aigtek ATA-122D,四块300mm*300mm铝板,电阻若干(0.5kR/1kR/2kR) 放大器型号:Aigtek ATA-122D 实验过程: 如图所示为电容耦合型无线电能传输系统实验平台,其中包括一台信号发生器Agilent33220A,用以产生高频信号源;一台宽带功率放大器Aigtek ATA-122D,用以放大信号发生器的输出信号;两对300mm*30mm大小的铝制金属板以及若干电阻(0.5kR,1kR,2kR)。金属板1和3之间的垂直距离为10mm,金属板1和2之间的水平距离为100mm。在实验中,金属板1和2接功率放大器的输出,金属板3和4接电阻。金属板1和2之间的电压设置为20Vrms@1MHz。为了避免任何金属板通过测量设备直接接地,信号发生器与功率放大器均由隔离变压器供电,同时实验过程中的示波器选用手持式示波器Keysight U1620A。当实验需要时

看完从此远离EMC困扰

杀马特。学长 韩版系。学妹 提交于 2020-01-11 05:19:19
电磁兼容性或电磁兼容(EMC)是在电学中研究意外电磁能量的产生、传播和接收,以及这种能量所引起的有害影响。目标是在相同环境下,涉及电磁现象的不同设备都能够正常运转,而且不对此环境中的任何设备产生难以忍受的电磁干扰之能力。下面分几部分详细介绍。 第一部分 电磁骚扰的耦合机理 1、基本概念 电磁骚扰传播或耦合,通常分为两大类:即传导骚扰传播和辐射骚扰传播。通 过导体传播的电磁骚扰,叫传导骚扰;通过空间传播的电磁骚扰,叫辐射骚扰。 上图传染病的模型非常近似: 2、 电磁骚扰的常用单位 骚扰的单位通用分贝来表示,分贝的原始定义为两个功率的比: 通常用 dBm 表示功率的单位,dBm 即是功率相对于 1mW 的值: 通过以下的推导可知电压由分贝表示为(注意有一个前提条件为 R1=R2): 通常用 dBuV 表示电压的大小,dBuV 即是电压相对于 1uV 的值。 对于辐射骚扰通常用电磁场的大小来度量,其单位是 V/m。通常用的单位是dBuV/m。 3、传导干扰 a、共阻抗耦合 由两个回路经公共阻抗耦合而产生,干扰量是电流 i,或变化的电流 di/dt。 当两个电路的地电流流过一个公共阻抗时,就发生了公共阻抗耦合。我们在放大器中,级与级之间的一种耦合方式是“阻容”耦合方式,这就是一种利用公共阻抗进行信号耦合的应用。在这里,上一级的输出与下一级的输入共用一个阻抗。 由于地线就是信号的回流线

EMC整改——常用小方法

大兔子大兔子 提交于 2019-12-27 12:01:09
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> 针对EMC整改中常用的问题进行、探讨,力图抛砖引玉进行讨论。 首先,要根据实际情况对产品进行诊断,分析其干扰源所在及其相互干扰的途径和方式。再根据分析结果,有针对性的进行整改。 一般来说主要的整改方法有如下几种: 1、减弱干扰源、在找到干扰源的基础上,可对干扰源进行允许范围内的减弱,减弱源的方法一般有如下方法: 1)、在IC的Vcc和GND之间加去耦电容,该电容的容量在0。01μF枣0。1μF之间,安装时注意电容器的引线,使它越短越好。 2)、在保证灵敏度和信噪比的情况下加衰减器。如VCD、DVD视盘机中的晶振,它对电磁兼容性影响较为严重,减少其幅度就是可行的方法之一,但其不是唯一的解决方法。 3)、还有一个间接的方法就是使信号线远离干扰源。 2、电线电缆的分类整理、在电子设备中,线间耦合是一种重要的途径,也是造成干扰的重要原因,因为频率的因素,可大体分为高频耦合与低频耦合。因耦合方式不同,其整改方法也是不同的,下边分别讨论: 1)低频耦合、低频耦合是指导线长度等于或小于1/16波长的情况,低频耦合又可分为电场和磁场耦合,电场耦合的物理模型是电容耦合,因此整改的主要目的是减小分布耦合电容或减小耦合量,可采用如下的方法: a、增大电路间距是减小分布电容的最有效的方法。 b、追加高导电性屏蔽罩

Atitit 深入理解耦合Coupling的原理与attilax总结

狂风中的少年 提交于 2019-12-27 03:21:08
Atitit 深入理解 耦合 Coupling 的原理与 attilax总结 耦合是指两个或两个以上的电路元件或电网络等的输入与输出之间存在紧密配合与相互影响,并通过相互作用从一侧向另一侧传输能量的现象。 耦合作为名词在 通信工程 、 软件工程 、机械工程等工程中都有相关名词术语。 1. 1 主要分类 2. ▪ 多场耦合 3. ▪ 能量耦合 4. ▪ 数据耦合 5. ▪ 标记耦合 1. ▪ 控制耦合 2. ▪ 外部耦合 3. ▪ 公共耦合 4. ▪ 内容耦合 5. ▪ 非直接耦合 6. ▪ 另类情况 耦合是系统设计中最重要的概念之一,也是设计中真正的基本原则之一。所谓耦合,指的是对某元素与其他元素之间的连接、感知和依赖程度的度量。在一个 OO 系统中,所有的耦合形式可分为 5 类: l 零耦合( nil coupling ):两个类丝毫不依赖于对方。 l 导出耦合( export coupling ):一个类依赖于另一个类的公有接口。 l 授权耦合( overt coupling ):一个类经允许,使用另一个类的实现细节。 l 自行耦合( covert coupling ):一个类未经允许,使用另一个类的实现细节。 l 暗中耦合( surreptitious coupling ):一个类通过某种方式知道了另一个类的实现细节。 零耦合当然是耦合度最低的。两个丝毫互不依赖的类