orb

ORB:新一代 Linux 应用

久未见 提交于 2019-12-07 21:11:32
Orbital Apps 给我们带来了一种新的软件包类型 ORB,它具有便携软件、交互式安装向导支持,以及离线使用的能力。 便携软件很方便。主要是因为它们能够无需任何管理员权限直接运行,也能够带着所有的设置和数据随 U 盘存储。而交互式的安装向导也能让我们轻松地安装应用。 OPEN RUNNABLE BUNDLE (ORB) ORB 是一个自由开源的包格式,它和其它包格式在很多方面有所不同。ORB 的一些特性: 压缩:所有的包都经过 squashfs 压缩,体积最多可减少 60%。 便携模式:如果一个便携 ORB 应用是在可移动设备上运行的,它会把所有设置和数据存储在那之上。 安全:所有的 ORB 包使用 PGP/RSA 签名,通过 TLS 1.2 分发。 离线:所有的依赖都打包进软件包,所以不再需要下载依赖。 开放式软件包:ORB 软件包可以作为 ISO 镜像挂载。 种类 ORB 应用现在有两种类别: 便携软件 SuperDEB 1. 便携 ORB 软件 便携 ORB 软件可以立即运行而不需要任何的事先安装。这意味着它不需要管理员权限,也没有依赖!你可以直接从 Orbital Apps 网站下载下来就能使用。 并且由于它支持便携模式,你可以将它拷贝到 U 盘携带。它所有的设置和数据会和它一起存储在 U 盘。只需将 U 盘连接到任何运行 Ubuntu 16.04 的机器上就行了。

FLANN error in OpenCV 3

ⅰ亾dé卋堺 提交于 2019-12-06 18:51:44
问题 I am running Ubuntu 14.04. I am trying to run FLANN with openCV 3 but I get an error. Everything bellow was tried by using AKAZE and ORB but the code if from my attempt to use ORB. I use ORB to find the descriptors and key-points. Ptr<ORB> detector = ORB::create(); std::vector<KeyPoint> keypoints_1, keypoints_2; Mat descriptors_1, descriptors_2; detector->detectAndCompute( img_1, noArray(), keypoints_1, descriptors_1 ); detector->detectAndCompute( img_2, noArray(), keypoints_2, descriptors_2

Open CV object detection : ORB_GPU detector and SURF_GPU descriptor extractor

二次信任 提交于 2019-12-06 04:17:05
I was just making a small experiment to play around with different detector/descriptor combinations. My code uses an ORB_GPU detector for detection of features and SURF_GPU descriptor for calculating the descriptors. I uses a BruteForceMatcher_GPU to match the descriptors and i am suing the knnMatch method to get the matches. The problem is I am getting a lot of unwanted matches, the code is literally matching every feature it could find in both the images. I am quite confused with this behavior. Following is my code ( GPU version ) #include "stdafx.h" #include <stdio.h> #include <iostream>

Performance issues using BRISK detector/descriptor OpenCV

可紊 提交于 2019-12-05 01:31:20
问题 I'm experiencing a performance problem when I use BRISK for feature detection and description in OpenCV. Basically I try to match all the descriptors I get from this image: against all the descriptors I get from a database of images using flann based matcher with the LSH algorithm and BRISK for feature detection and description. My database of images is composed of 242 images. In this 242 images there are three images corresponding to each object taken separately in the above "complex" image

FLANN error in OpenCV 3

流过昼夜 提交于 2019-12-05 00:25:44
I am running Ubuntu 14.04. I am trying to run FLANN with openCV 3 but I get an error. Everything bellow was tried by using AKAZE and ORB but the code if from my attempt to use ORB. I use ORB to find the descriptors and key-points. Ptr<ORB> detector = ORB::create(); std::vector<KeyPoint> keypoints_1, keypoints_2; Mat descriptors_1, descriptors_2; detector->detectAndCompute( img_1, noArray(), keypoints_1, descriptors_1 ); detector->detectAndCompute( img_2, noArray(), keypoints_2, descriptors_2 ); After I use ORB, I use the following code to find matches: FlannBasedMatcher matcher; std::vector

Matching Features with ORB python opencv

匿名 (未验证) 提交于 2019-12-03 08:48:34
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: hi im working in Matching Features with ORB python opencv but when i run this code i get this error Traceback (most recent call last): File "ffl.py", line 27, in for m,n in matches: TypeError: 'cv2.DMatch' object is not iterable i don't know how to fix it import numpy as np import cv2 import time ESC=27 camera = cv2.VideoCapture(0) orb = cv2.ORB_create() bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) imgTrainColor = cv2.imread('/home/shar/home.jpg') imgTrainGray = cv2.cvtColor(imgTrainColor, cv2.COLOR_BGR2GRAY) kpTrain = orb.detect

OpenCV ORB descriptor - how exactly is it stored in a set of bytes?

≡放荡痞女 提交于 2019-12-03 05:55:09
问题 I'm currently using OpenCV's ORB features extractor and I did notice the strange (at least for me) way the ORB-descriptor is stored (it is basically a BRIEF-32 with a modification that is not relevant to my question). As some of you know ORB takes the keypoints extracted using a modified FAST-9 (circle radius = 9 pixels; also stores orientation of the keypoint) and uses those with a modified BRIEF-32 descriptor to store the feature that the keypoint represents. BRIEF (ORB version) works as

How to init ORB from property file?

匿名 (未验证) 提交于 2019-12-03 02:33:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I would like to init my ORB from property file (normally I init it like this, while running my examples: ./app -ORBInitRef NameService=corbaloc::localhost:2809/NameService ) I wrote a simple code: private static String[] readConfigFile() { Properties prop = new Properties(); String arg[] = new String[1]; try { prop.load(new FileInputStream("config.properties")); } catch (IOException ex) {} arg[0] = prop.getProperty("ORBInitRef"); return arg; } and then tried to init my orb: clientsORB = org.omg.CORBA.ORB.init(readConfigFile(), null); but

opencv FLANN with ORB descriptors?

匿名 (未验证) 提交于 2019-12-03 00:52:01
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I am trying to use FLANN with ORB descriptors, but opencv crashes with this simple code: vector > dbKeypoints; vector dbDescriptors; vector objects; /* load Descriptors from images (with OrbDescriptorExtractor()) */ FlannBasedMatcher matcher; matcher.add(dbDescriptors); matcher.train() //> Crash! If I use SurfDescriptorExtractor() it works well. How can I solve this? OpenCV says: OpenCV Error: Unsupported format or combination of formats (type=0 ) in unknown function, file D:\Value\Personal\Parthenope\OpenCV\modules\flann\sr c\miniflann.cpp,

ORB

匿名 (未验证) 提交于 2019-12-03 00:38:01
1、算法介绍 1.1 Fast 特征提取 ORB算法的特征提取是由FAST算法改进的,这里成为oFAST(FASTKeypoint Orientation)。也就是说,在使用FAST提取出特征点之后,给其定义一个特征点方向,以此来实现特征点的旋转不变形。FAST算法是公认的最快的特征点提取方法。FAST算法提取的特征点非常接近角点类型。oFAST算法如下: 步骤一 :粗提取。该步能够提取大量的特征点,但是有很大一部分的特征点的质量不高。下面介绍提取方法。从图像中选取一点P,如上图1。我们判断该点是不是特征点的方法是,以P为圆心画一个半径为3pixel的圆。圆周上如果有连续n个像素点的灰度值比P点的灰度值大或者小,则认为P为特征点。一般n设置为12。为了加快特征点的提取,快速排出非特征点,首先检测1、9、5、13位置上的灰度值,如果P是特征点,那么这四个位置上有3个或3个以上的的像素值都大于或者小于P点的灰度值。如果不满足,则直接排出此点。 步骤二 :机器学习的方法筛选最优特征点。简单来说就是使用ID3算法训练一个决策树,将特征点圆周上的16个像素输入决策树中,以此来筛选出最优的FAST特征点。 步骤三 :非极大值抑制去除局部较密集特征点。使用非极大值抑制算法去除临近位置多个特征点的问题。为每一个特征点计算出其响应大小。计算方式是特征点P和其周围16个特征点偏差的绝对值和