Reduction to Clique prob
问题 Subgraph isomorphism We have the graphs G_1=(V_1,E_1), G_2=(V_2,E_2). Question : Is the graph G_1 isomorphic to a subgraph of G_2 ? (i.e. is there a subset of vertices of G_2, V ⊆ V_2 and subset of the edges of G_2, E ⊆ E_2 such that |V|=|V_1| and |E|=|E_1| and is there a one-to-one matching of the vertices of G_1 at the subset of vertices V of G_2, f:V_1 -> V such that {u,v} ∈ E_1 <=> { f(u),f(v) } ∈ E) Show that the problem Subgraph isomorphism belongs to NP. Show that the problem is NP