能力模型

CVAE-GAN论文学习-1

我怕爱的太早我们不能终老 提交于 2019-11-29 08:17:31
CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training 摘要 我们提出了一个变分生成对抗网络,一个包含了与生成对抗网络结合的变分子编码器,用于合成细粒度类别的图像,比如具体某个人的脸或者某个类别的目标。我们的方法构建一张图片作为概率模型中的一个标签成分和潜在属性。通过调整输入结果生成模型的细粒度类别标签,我们能够通过随机绘制潜在属性向量中的值来生成指定类别的图像。我们方法的创新点在于两个方面: 首先是我们提出了在判别器和分类器网络中使用交叉熵损失,对于生成器网络则使用平均差异目标函数。这种不对称损失函数能够使得训练出来的GAN网络更稳定。 其次是我们使用了encoder网络去学习潜在空间和真实图片空间中的关系,并使用成对的特性去保持生成图像的结构。 我们使用人脸、花和鸟的自然图片来训练,并说明了提出的模型有能力去生成有着细粒度类别标签的真实且不同的样本。我们进一步将展示我们的模型应用于其他任务的效果,如图像修复、高分辨率以及用于训练更好的人脸识别模型的数据增强。 1. Introduction 构建自然图像的有效的生成模型是计算机视觉中的主要问题。它目标是根据潜在的自然图像分布来调整一些潜在向量来生成不同的真实图片。因此,期望的生成模型是能够捕获钱在的数据分布。这可以说是一个很难的任务

昇腾AI处理器软件栈--总览

谁都会走 提交于 2019-11-28 05:55:51
昇腾AI软件栈提供了计算资源、性能调优的运行框架以及功能多样的配套工具,是一套完整的解决方案,可以使昇腾AI处理器发挥出极佳的性能。 昇腾AI软件栈可以分为神经网络相关软件模块、工具链以及其它软件模块。 · 神经网络软件主要包含了流程编排器(Matrix),框架管理器(Framework),运行管理器(Runtime)、数字视觉预处理模块(Digital Vision Pre-Processing,DVPP)、张量加速引擎(Tensor Boost Engine,TBE)以及任务调度器(Task Scheduler,TS)等功能模块,主要用来完成神经网络模型的生成、加载和执行等功能。 · 工具链主要为神经网络实现过程提供了辅助便利。 这些主要组成部分在软件栈中功能和作用相互依赖,承载着数据流、计算流和控制流。昇腾AI软件栈主要分为4个层次和一个辅助工具链。4个层次分别为L3应用使能层、L2执行框架层、L1芯片使能层和L0计算资源层。工具链主要提供了程序开发、编译调测、应用程序流程编排、日志管理和性能分析等辅助能力。 昇腾AI软件栈逻辑架构图 L3应用使能层 L3应用使能层是应用级封装,主要是面向特定的应用领域,提供不同的处理算法。应用使能层包含计算机视觉引擎、语言文字引擎以及通用业务执行引擎等,其中: · 计算机视觉引擎面向计算机视觉领域提供一些视频或图像处理的算法封装

金融大数据信用评分模型解析

荒凉一梦 提交于 2019-11-27 09:24:50
传统个人征信的分析维度包括: 1 )个人基本数据,如年龄、性别、职业、收入、婚姻状况、工作年限、 工作状况等; 2) 信贷情况,主要是信贷和信用卡相关数据; 3)公共数据,包括税务、工商、法院、电信、水电煤气等部门的数据; 4) 个人信用报告查询记录。 如今随着 大数据 时代的到来和发展,可用于评估人们的数据越来越丰富,如电商的交易数据、社交类数据(强社交关系如何转化为信用资产)、网络行为数据等, 来自互联网的数据将帮助金融机构更充分地了解客户。 (一) 侧重电商: 芝麻信用 以芝麻信用所构建的信用体系来看,芝麻信用分根据当前采集的个人用户信息进行加工、整理、计算后得出的信用评分,分值范围是 350 到 950,分值越高代表信用水平越好,较高的芝麻分可以帮助个人获得更高效、更优质的服务。 芝麻分综合考虑了个人用户的信用历史、行为偏好、履约能力、身份特质、人脉关系五个维度的信息,其中来自淘宝、支付宝等“阿里系”的数据占 30-40%。 1) 信用历史: 过往信用账户还款记录及信用账户历史。目前这一块内容大多来自支付宝,特别是支付宝转账和用支付宝还信用卡的历史。 2) 行为偏好: 在购物、缴费、转账、理财等活动中的偏好及稳定性。比如一个人每天打游戏 10 小时,那么就会被认为是无所事事;如果一个人经常买纸尿裤,那这个人便被认为已为人父母,相对更有责任心。 3) 履约能力:

5.多项式回归与模型泛化

 ̄綄美尐妖づ 提交于 2019-11-27 03:59:11
(一)什么是多项式回归 还记得线性回归法吗?线性回归法有一个很大的局限性,那就是需要数据是有一定的线性关系的,但是现实中的很多数据是没有线性关系的。多项式就是用来解决这个问题的,可以处理非线性数据 在线性回归中,我们是假设数据具有线性关系的,因此我们在简单线性回归中,将直线的方向设置为y=ax+b的形式,那么我们求出a和b即可。 而对于有些数据,我们虽然也可以使用线性回归,但是显然具有更加强的非线性的关系,换句话说,如果我们用一个二次曲线来拟合这些点,效果会更好。因此函数就变成了了y=ax^2+bx+c,我们求出a、b、c即可。但是本质上,和线性回归一样,目前都是只有一个特征,只不过我们为样本多添加了一些特征,这些特征是原来的多项式项。求出了对原来的特征而言,一个非线性的曲线。 生成数据集 import numpy as np import matplotlib.pyplot as plt # 生成一百个样本,每个样本只有一个特征 X = np.random.uniform(-3, 3, size=(100, 1)) y = 0.5 * X ** 2 + X + 2 + np.random.normal(0, 1, size=(100,1)) plt.scatter(X, y) plt.show() 可以看到数据大概满足一条二次曲线,但是我们使用线性回归法来拟合一下 from

技术经理指导设计学习

无人久伴 提交于 2019-11-26 21:28:02
今天gd找我谈话,了解我们自己的发展意愿,对于我想学做设计的想法,他结合他自己的经验提了下面的一些建议,很宝贵: 1、技术功底一定要硬! 这句话怎么理解呢,首先需要对所在平台的技术有全面和深入的掌握。以J2EE为例,需要你把J2SE的高级概念和技法运用自如,如多线程、反射、泛型等,需要你了解JVM内存分配和内存管理的机制等;对J2EE的标准的基础和高级知识一一掌握,对SSH等框架的实现原理和使用注意等知识的掌握没有任何死角,对各大框架实现的核心部分做深入的学习等 2、以思想指导技术的学习 上面的一条是要求你对知识的掌握水平,而这一条则是指导你如何更好的达到第一点的要求,并增加你的设计能力。 以设计思想和架构思想知道你的学习,学习一门知识以学习到它实现时的指导思想为最终目的,提高自己知识的精炼程度和深度。 3、模式、模型的积累 来自他人的直接经验:书、设计文档、培训 来自项目的经验:其实是一种总结和抽象能力,开源的项目、自己做过的项目; 3、快速的反应 与经验有关,对所有业务的描述能快速的在头脑中创建出一个准确的放映它的模型 4、强大的记忆能力 对自己设计的模型的每个细节都了如指掌,将模型图中的每个点和每条线的功用和特殊性都深深的印在脑子里。 5、技术以外的能力 重要性不亚于技术和设计能力,直接决定着你以后的发展平台有多大。 a、主动能力,主动的获取需求,主动的寻求帮助

数学建模的介绍

心已入冬 提交于 2019-11-26 20:29:17
建模背景 数学技术 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济,管理,金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 数学模型 (Mathematical Model)是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为 数学建模 (Mathematical Modeling)。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解(通常借助计算机);数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。 建模应用 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性,逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性

首场百度大脑开放日来袭 | 全新开放24项AI技术

寵の児 提交于 2019-11-26 18:45:54
活动当天,百度AI技术生态部总经理喻友平,就百度大脑平台与生态进行了全面的详解,同时展示了百度大脑开放平台Q1核心升级内容,包括语音技术、视觉技术、自然语言处理、知识图谱等通用AI能力的新近推出,以及开源深度学习框架方面的优化升级,更有多个应用场景案例与大家分享,可谓干货满满,广受前来参加活动的开发者与媒体们欢迎与称赞。 1PaddlePaddle:用深度学习赋能智能+的方方面面 1、业界首个视频分类模型库:新增视频模型库,提供5个视频分类经典模型以及适合视频分类任务的通用骨架代码,用户可一键式高效配置模型完成训练和评测。视频理解权威竞赛ActivityNet - Kinetics视频动作识别任务冠军方法stNet的resnet50版本开源实现。 2、基于PaddlePaddle的BERT多机多卡和混合精度训练。新增支持NLP语义表示BERT模型,支持多机多卡训练,支持混合精度训练,训练速度对比主流实现提升50%+,提供完整部署示例。 3、分布式训练性能大幅提升:大规模稀疏参数服务器Benchmark发布, CPU多机异步训练发布显著提升点击率预估任务IO吞吐的built-in reader,多机多卡训练性能多方面提升。 并推出业界领先的深度强化学习框架PARL1.0。据喻友平介绍,PARL曾在NeurIPS 2018 夺冠。具有高灵活性和可扩展性,支持可定制的并行扩展,覆盖DQN

首场百度大脑开放日来袭 | 全新开放24项AI技术

别说谁变了你拦得住时间么 提交于 2019-11-26 18:45:44
活动当天,百度AI技术生态部总经理喻友平,就百度大脑平台与生态进行了全面的详解,同时展示了百度大脑开放平台Q1核心升级内容,包括语音技术、视觉技术、自然语言处理、知识图谱等通用AI能力的新近推出,以及开源深度学习框架方面的优化升级,更有多个应用场景案例与大家分享,可谓干货满满,广受前来参加活动的开发者与媒体们欢迎与称赞。 1PaddlePaddle:用深度学习赋能智能+的方方面面 1、业界首个视频分类模型库:新增视频模型库,提供5个视频分类经典模型以及适合视频分类任务的通用骨架代码,用户可一键式高效配置模型完成训练和评测。视频理解权威竞赛ActivityNet - Kinetics视频动作识别任务冠军方法stNet的resnet50版本开源实现。 2、基于PaddlePaddle的BERT多机多卡和混合精度训练。新增支持NLP语义表示BERT模型,支持多机多卡训练,支持混合精度训练,训练速度对比主流实现提升50%+,提供完整部署示例。 3、分布式训练性能大幅提升:大规模稀疏参数服务器Benchmark发布, CPU多机异步训练发布显著提升点击率预估任务IO吞吐的built-in reader,多机多卡训练性能多方面提升。 并推出业界领先的深度强化学习框架PARL1.0。据喻友平介绍,PARL曾在NeurIPS 2018 夺冠。具有高灵活性和可扩展性,支持可定制的并行扩展,覆盖DQN