图像识别深度学习嵌入式开发板比较
嵌入式AI主要用于图像识别和语音识别,图像识别主要用于工业、自动化、医疗等行业。以医疗行业为例,由于医疗保健行业大量使用大数据及嵌入式人工智能,进而精准改善疾病诊断、医疗人员与患者之间人力的不平衡、降低医疗成本、促进跨行业合作关系。此外 嵌入式人工智能 还广泛应用于临床试验、大型医疗计划、医疗咨询与宣传推广和销售开发。嵌入式人工智能导入医疗保健行业从2016年到2022年维持很高成长,预计从2016年的6.671亿美元达到2022年的79.888亿美元年均复合增长率为52.68%。 多家半导体厂商已经推出嵌入式AI平台,比如 华为海思今年4月份发布的Hi3559A,这个样品超过100美金/片 集成寒武纪AI核(遗憾不是最新的版本,因为最近寒武纪又发布最新的AI版本,同时还集成大名鼎鼎Cadence的 4核DSP); 赛灵思Xilinx的FPGA—— Zynq 7020,ZU2CG开发难度大,价格不菲,还有其他家的ARM+FPGA方案也不便宜,开发难度也不小; 英伟达的GPU——JETSON TX2,TX2核心板英伟达自己生产,价格太贵,不适合产品小型化生产; TI 的TDA2x系列和DAVINCI系列最新的DM505,以及后续的版本,专注辅助驾驶ADAS,他的64bit浮点DSP C66X+EYE也支持深度学习(不要小瞧EYE,深度学习一个EYE比2个C66X 浮点DSP还强)