mnist

How to extract only characters from image?

这一生的挚爱 提交于 2020-05-23 08:51:11
问题 I have this type of image from that I only want to extract the characters. After binarization, I am getting this image img = cv2.imread('the_image.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 9) Then find contours on this image. (im2, cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) cnts = sorted(cnts, key=cv2.contourArea, reverse=True) for contour in cnts[:2000

Cross validation for MNIST dataset with pytorch and sklearn

◇◆丶佛笑我妖孽 提交于 2020-05-15 05:03:09
问题 I am new to pytorch and are trying to implement a feed forward neural network to classify the mnist data set. I have some problems when trying to use cross-validation. My data has the following shapes: x_train : torch.Size([45000, 784]) and y_train : torch.Size([45000]) I tried to use KFold from sklearn. kfold =KFold(n_splits=10) Here is the first part of my train method where I'm dividing the data into folds: for train_index, test_index in kfold.split(x_train, y_train): x_train_fold = x

expected conv2d_1_input to have shape (28, 28, 1) but got array with shape (1, 28, 28)

谁说我不能喝 提交于 2020-04-11 05:42:47
问题 So i'm using the mnist example on keras and I am trying to predict a digit of my own. I'm really struggling with how I can match the dimension sizes as I cant seem to find a way to resize my image to have the rows and columns after the image no. I've tried resizing with via numpy however I just get error after error... The code from __future__ import print_function import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout,

expected conv2d_1_input to have shape (28, 28, 1) but got array with shape (1, 28, 28)

谁都会走 提交于 2020-04-11 05:42:28
问题 So i'm using the mnist example on keras and I am trying to predict a digit of my own. I'm really struggling with how I can match the dimension sizes as I cant seem to find a way to resize my image to have the rows and columns after the image no. I've tried resizing with via numpy however I just get error after error... The code from __future__ import print_function import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout,

Visualize MNIST dataset using OpenCV or Matplotlib/Pyplot

喜你入骨 提交于 2020-04-09 15:50:47
问题 i have MNIST dataset and i am trying to visualise it using pyplot. The dataset is in cvs format where each row is one image of 784 pixels. i want to visualise it in pyplot or opencv in the 28*28 image format. I am trying directly using : plt.imshow(X[2:],cmap =plt.cm.gray_r, interpolation = "nearest") but i its not working? any ideas on how should i approach this. 回答1: Assuming you have a CSV file with this format, which is a format the MNIST dataset is available in label, pixel_1_1, pixel_1

Visualize MNIST dataset using OpenCV or Matplotlib/Pyplot

倾然丶 夕夏残阳落幕 提交于 2020-04-09 15:47:46
问题 i have MNIST dataset and i am trying to visualise it using pyplot. The dataset is in cvs format where each row is one image of 784 pixels. i want to visualise it in pyplot or opencv in the 28*28 image format. I am trying directly using : plt.imshow(X[2:],cmap =plt.cm.gray_r, interpolation = "nearest") but i its not working? any ideas on how should i approach this. 回答1: Assuming you have a CSV file with this format, which is a format the MNIST dataset is available in label, pixel_1_1, pixel_1

可视化反投射:坍塌尺寸的概率恢复:ICCV9论文解读

∥☆過路亽.° 提交于 2020-04-04 10:47:21
可视化反投射:坍塌尺寸的概率恢复:ICCV9论文解读 Visual Deprojection: Probabilistic Recovery of Collapsed Dimensions 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Balakrishnan_Visual_Deprojection_Probabilistic_Recovery_of_Collapsed_Dimensions_ICCV_2019_paper.pdf 摘要 我们介绍视觉投射:恢复沿维度折叠的图像或视频的任务。投影出现在各种情况下,例如长曝光摄影,动态场景被及时折叠以产生运动模糊图像,以及角部相机,其中场景中反射的光由于边缘遮挡器而沿空间维度折叠以产生 1D视频。反投影是不适定的——通常对于给定的输入有许多合理的解决方案。我们首先提出了一个捕捉任务模糊性的概率模型。然后,我们提出了一种以卷积神经网络为函数逼近器的变分推理策略。在测试时从推理网络中采样,从与给定输入投影一致的原始信号分布中产生可能的候选信号。我们在多个数据集上对该方法进行了评估。我们首先证明了该方法可以从空间投影中恢复人体步态视频和人脸图像,然后证明该方法可以从通过时间投影获得的剧烈运动模糊图像中恢复运动数字视频。 1. Introduction

Classification

[亡魂溺海] 提交于 2020-03-31 10:33:59
本篇文章基于 著作《Hands-On Machine Learning with Scikit-learn,Keras and TensorFlow 2nd edition》,主要介绍分类模型。 1. MNIST数据集:   MNIST数据集是一组70000张小数字图像,由高中生和美国人口普查局员工手写,每个图片都代表一个数字。MNIST数据集被机器学习领域广泛使用,以至于该数据集被称为机器学习领域的“hello world”。每当一种新的分类算法面世时,都会看看它在该数据集上的表现。 来源: https://www.cnblogs.com/natty-sky/p/12603323.html

Ubuntu14.04+caffe+CPU

拟墨画扇 提交于 2020-03-29 05:49:30
刚刚在上篇博客记录了windows10下GPU版本caffe的安装,正准备跑跑论文里的代码,发现好多命令都是.sh命令,这是linux系统的脚本文件。不能直接在windows下运行,于是我想把.sh转换为windows下可执行的bat文件,但是又发现代码需要将数据转换为leveldb格式。而leveldb不能直接在windows下编译,还需配置,比较繁琐。而lmdb可以直接在windows下编译。下面是两者区别: 它们都是键/值对(Key/Value Pair)嵌入式数据库管理系统编程库。 虽然lmdb的内存消耗是leveldb的1.1倍,但是lmdb的速度比leveldb快10%至15%,更重要的是lmdb允许多种训练模型同时读取同一组数据集。 因此lmdb取代了leveldb成为Caffe默认的数据集生成格式 说了这么多,就是windows确实不方便,于是想搞一波linux。但是不太熟悉,所以没有搞双系统,先在虚拟机上练练手,尽管虚拟机不能用GPU。 我的配置:VMware-workstation-full-12.00(12貌似更契合win10)、ubuntu-14.04-desktop-amd64(14LTS版本和16LTS版本相对稳定,amd64即64位版本) 虚拟机和ubuntu安装比较简单,基本是傻瓜式安装。 安装python接口的caffe:(无GPU)、无cuda

caffe(9) caffe例子

好久不见. 提交于 2020-03-24 02:17:02
为了程序的简洁,在caffe中是不带练习数据的,因此需要自己去下载。但在caffe根目录下的data文件夹里,作者已经为我们编写好了下载数据的脚本文件,我们只需要联网,运行这些脚本文件就行了。 注意:在caffe中运行所有程序,都必须在根目录下进行,否则会出错 1、mnist实例 mnist是一个手写数字库,由DL大牛Yan LeCun进行维护。mnist最初用于支票上的手写数字识别, 现在成了DL的入门练习库。征对mnist识别的专门模型是Lenet,算是最早的cnn模型了。 mnist数据训练样本为60000张,测试样本为10000张,每个样本为28*28大小的黑白图片,手写数字为0-9,因此分为10类。 首先下载mnist数据,假设当前路径为caffe根目录 sudo sh data/mnist/get_mnist.sh 运行成功后,在 data/mnist/目录下有四个文件: train-images-idx3-ubyte: 训练集样本 (9912422 bytes) train-labels-idx1-ubyte: 训练集对应标注 (28881 bytes) t10k-images-idx3-ubyte: 测试集图片 (1648877 bytes) t10k-labels-idx1-ubyte: 测试集对应标注 (4542 bytes) 这些数据不能在caffe中直接使用