Find all edges in min-cut
问题 Let (G,s,t,{c}) be a flow network, and let F be the set of all edges e for which there exists at least one minimum cut (A,B) such that e goes from A to B. Give a polynomial time algorithm that finds all edges in F. NOTE: So far I know I need to run Ford-Fulkerson so each edges has a flow. Furthermore I know for all edges in F, the flow f(e) = c(e). However not all edges in a graph G which respects that constraint will be in a min-cut. I am stuck here. 回答1: Suppose you have computed a max flow