ICRA 2020轨迹预测竞赛冠军的方法总结
行人轨迹预测问题是无人驾驶技术的重要一环,已成为近年来的一项研究热点。在机器人领域国际顶级会议ICRA 2020上,美团无人配送团队在行人轨迹预测竞赛中夺冠,本文系对该预测方法的一些经验总结,希望能对大家有所帮助或者启发。 一、背景 6月2日,国际顶级会议ICRA 2020举办了“第二届长时人类运动预测研讨会”。该研讨会由博世有限公司、厄勒布鲁大学、斯图加特大学、瑞士洛桑联邦理工联合组织,同时在该研讨会上,还举办了一项行人轨迹预测竞赛,吸引了来自世界各地的104支队伍参赛。美团无人配送团队通过采用“世界模型”的交互预测方法,夺得了该比赛的第一名。 二、赛题简介 本次竞赛提供了街道、出入口、校园等十个复杂场景下的行人轨迹数据集,要求参赛选手根据这些数据集,利用行人在过去3.6秒的轨迹来预测其在未来4.8秒的运行轨迹。竞赛使用FDE(预测轨迹和真实轨迹的终点距离)来对各种算法进行排名。 本次的赛题数据集,主要来源于各类动态场景下的真实标注数据和模拟合成数据,采集频率为2.5赫兹,即两个时刻之间的时间差为0.4秒。数据集中的行人轨迹都以固定坐标系下的时序坐标序列表示,并且根据行人的周围环境,这些轨迹被分类成不同的类别,例如静态障碍物、线性运动、追随运动、避障行为、团体运动等。在该比赛中,参赛队伍需要根据每个障碍物历史9个时刻的轨迹数据(对应3.6秒的时间)来预测未来12个时刻的轨迹