matlab小波变换

一些常用的语音特征提取算法

試著忘記壹切 提交于 2019-12-02 02:10:48
前言   语言是一种复杂的自然习得的人类运动能力。成人的特点是通过大约100块肌肉的协调运动,每秒发出14种不同的声音。说话人识别是指软件或硬件接收语音信号,识别语音信号中出现的说话人,然后识别说话人的能力。特征提取是通过将语音波形以相对最小的数据速率转换为参数表示形式进行后续处理和分析来实现的。因此,可接受的分类是从优良和优质的特征中衍生出来的。Mel频率倒谱系数(MFCC)、线性预测系数(LPC)、线性预测倒谱系数(LPCC)、线谱频率(LSF)、离散小波变换(DWT)和感知线性预测(PLP)是本章讨论的语音特征提取技术。这些方法已经在广泛的应用中进行了测试,使它们具有很高的可靠性和可接受性。研究人员对上述讨论的技术做了一些修改,使它们更不受噪音影响,更健壮,消耗的时间更少。总之,没有一种方法优于另一种,应用范围将决定选择哪种方法。 本文主要的关键技术:mel频率倒谱系数(MFCC),线性预测系数(LPC),线性预测倒谱系数(LPCC),线谱频率(LSF),离散小波变换(DWT),感知线性预测(PLP) 1 介绍   人类通过言语来表达他们的感情、观点、观点和观念。语音生成过程包括发音、语音和流利性[1,2]。这是一种复杂的自然习得的人类运动能力,在正常成年人中,这项任务是通过脊椎和颅神经连接的大约100块肌肉协调运动,每秒发出大约14种不同的声音

数字图像处理入门(10)-小波变换

只谈情不闲聊 提交于 2019-12-01 15:21:12
一、前言   数字图像处理第七章的小波和多分辨率处理学不走了,把小波变换基础学习一下。如果有人不小心查看到这篇文章,建议跳过这里,直接阅读: https://blog.csdn.net/hellozex/article/details/78330923 https://blog.csdn.net/hellozex/article/details/78330923 二、基础概念 2.1 傅里叶变换基本原理 参考知乎: https://www.zhihu.com/question/22864189/answer/40772083 傅里叶变换公式如下: 原始信号如下: 基函数如下: 总结:说到底,这就是一个搞基的过程,通过对基的伸缩、平移。缩得窄,对应高频;伸得宽,对应低频。然后这个基函数不断和信号做相乘。某一个尺度(宽窄)下乘出来的结果,就可以理解成信号所包含的当前尺度对应频率成分有多少。于是,基函数会在某些尺度下,与信号相乘得到一个很大的值,因为此时二者有一种重合关系,那么我们就知道信号包含该频率的的成分有多少。 缺点:由于基函数的能量范围是整个空间,对于一些平稳的信号可以很好的处理,比如周期函数。但是现实中大多数信号都是非平稳信号,能量范围是整个空间的基函数,傅里叶之后的频域就只有频率幅值,这样就会丢失时域信息。这里可能会有几个问题: 傅里叶的本质是作甚? 答:他想表达的是一种变化