【你只需看一次】YOLO 全系列目标检测算法
文章目录 一、概述 二、Yolo系列全家桶 YOLOv1 开山鼻祖之作 YOLOv2 YOLOv3 YOLOv4 目标检测tricks集大成者 YOLOv5 Fast YOLO Complex-YOLO MV-YOLO YOLO3D YOLO-6D YOLO-LITE Spiking-YOLO DC-SPP-YOLO SpeechYOLO Complexer-YOLO SlimYOLOv3 REQ-YOLO YOLO Nano xYOLO IFQ-Tinier-YOLO DG-YOLO Poly-YOLO E-YOLO PP-YOLO 一、概述 我对yolo系列好感较高,虽不及其他系列的精度,速度,但是他现在已经精度与速度之中做了trade off ,侧端也友好。本文引自我爱计算机视觉,后续我将对这些算法消融对比,关注公众号(原文底部)敬请期待。 YOLO目标检测算法诞生于2015年6月,从出生的那一天起就是“高精度、高效率、高实用性”目标检测算法的代名词。 在原作者Joseph Redmon博士手中YOLO经历了三代到YOLOv3,今年初Joseph Redmon宣告退出计算机视觉研究界后,YOLOv4、YOLOv5相继而出,且不论谁是正统,这YOLO算法家族在创始人拂袖而出后依然热闹非凡。 本文带领大家细数在此名门之中自带“YOLO”的算法,总计 23 项工作