小波变换教程(十七)
离散小波变换(一) 1、为什么需要离散小波变换 虽然离散化的连续小波变换(即小波级数)使得连续小波变换的运算可以用计算机来实现,但这还不是真正的离散变换。事实上,小波级数仅仅是CWT的采样形式。即便是考虑到信号的重构,小波级数所包含的信息也是高度冗余的。这些冗余的信息同样会占用巨大的计算时间和资源。而离散小波变换(DWT)则不仅提供了信号分析和重构所需的足够信息,其运算量也大为减少。 相比CWT,DWT的实现要容易得多。本小节将介绍DWT的基本概念及其性质,以及用来实现其计算的算法。如前面的内容一样,会举一些应用实例来帮助理解DWT。 2、离散小波变换(DWT)历史 DWT的建立要追溯到1976年。当时,Croiser, Esteban, 和 Galand发明了一种分解离散时间信号的新技术。几乎在同时,Crochiere, Weber, 和 Flanagan在语音信号编码上也做了类似的工作。他们将其命名为子带编码。1983年,Burt定义了一种与子带编码非常类似的新方法,并取名为金字塔编码。现在,这两种编码方法都又称为 多分辨分析 。到1989年,Vetterli 和 Le Gall对子带编码方法进行了一些改进,并且去除了金字塔编码中的冗余。下面将会简要介绍子带编码。离散小波变换及多分辨分析理论的详细讨论可在很多相关的论文及专著中找到,这里不详细展开。 3、子带编码和多分辨分析