leveldb

no leveldbjni64-1.8 in java.library.path exception while running akka project

为君一笑 提交于 2019-12-25 09:45:03
问题 I am trying to start an existing project from the main class. But getting the exception below. java.lang.UnsatisfiedLinkError: Could not load library. Reasons: [no leveldbjni64-1.8 in java.library.path, no leveldbjni-1.8 in java.library.path, no leveldbjni in java.library.path, C:\Users\Z003SXSP\AppData\Local\Temp\leveldbjni-64-1-386410980806513791.8: Can't find dependent libraries] But when I tried running the same project from other machine, I am able to run it successfully also found

no leveldbjni64-1.8 in java.library.path exception while running akka project

Deadly 提交于 2019-12-25 09:44:31
问题 I am trying to start an existing project from the main class. But getting the exception below. java.lang.UnsatisfiedLinkError: Could not load library. Reasons: [no leveldbjni64-1.8 in java.library.path, no leveldbjni-1.8 in java.library.path, no leveldbjni in java.library.path, C:\Users\Z003SXSP\AppData\Local\Temp\leveldbjni-64-1-386410980806513791.8: Can't find dependent libraries] But when I tried running the same project from other machine, I am able to run it successfully also found

Leveldb limit testing - limit Memory used by a program

余生长醉 提交于 2019-12-25 09:30:12
问题 I'm currently benchmarking an application built on Leveldb. I want to configure it in such a way that the key-values are always read from disk and not from memory. For that, I need to limit the memory consumed by the program. I'm using key-value pairs of 100 bytes each and 100000 of them, which makes their size equal to 10 MB. If I set the virtual memory limit to less than 10 MB using ulimit, I can't even run the command Makefile . 1) How can I configure the application so that the key value

NodeJS/Levelgraph - get nth-friend-of-a-friend

有些话、适合烂在心里 提交于 2019-12-23 04:32:13
问题 I am using LevelGraph (https://github.com/mcollina/levelgraph) to store connected items. My items are connected in the following way: db.put([{ subject: "matteo", predicate: "friend", object: "daniele" }, { subject: "daniele", predicate: "friend", object: "bob" }, { subject: "bob", predicate: "friend", object: "marco" }, { subject: "marco", predicate: "friend", object: "fred" }, { subject: "fred", predicate: "friend", object: "joe" }, { subject: "joe", predicate: "friend", object: "david" }],

leveldb-go example, docs

六月ゝ 毕业季﹏ 提交于 2019-12-22 08:24:00
问题 LevelDB-Go is port of LevelDB in Go language. LevelDB-Go often referred as native alternative for Go apps. Website has no examples and no documentation. Should I learn it by reading source code? or there is another website with examples and docs? Does library support concurrency? 回答1: I played around a little with leveldb Here is what I got so far. This should get you started. package main import ( "code.google.com/p/leveldb-go/leveldb/db" "code.google.com/p/leveldb-go/leveldb/table" "fmt"

How to convert an existing relational database to a key-value store?

巧了我就是萌 提交于 2019-12-20 02:38:54
问题 I am trying to map a existing relational database to a key value store. Couple of example tables are represented below. For an instance the above "Employee Details" table can be represented as follows in Redis (or any similiar key-value store) set emp_details.first_name.01 "John" set emp_details.last_name.01 "Newman" set emp_details.address.01 "New York" set emp_details.first_name.02 "Michael" set emp_details.last_name.02 "Clarke" set emp_details.address.02 "Melbourne" set emp_details.first

MQ消息队列的12点核心原理总结

我的未来我决定 提交于 2019-12-17 21:06:26
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> 1. 消息生产者、消息者、队列 消息生产者Producer:发送消息到消息队列。 消息消费者Consumer:从消息队列接收消息。 Broker:概念来自与Apache ActiveMQ,指MQ的服务端,帮你把消息从发送端传送到接收端。 消息队列Queue:一个先进先出的消息存储区域。消息按照顺序发送接收,一旦消息被消费处理,该消息将从队列中删除。 2.设计Broker主要考虑 1)消息的转储:在更合适的时间点投递,或者通过一系列手段辅助消息最终能送达消费机。 2)规范一种范式和通用的模式,以满足解耦、最终一致性、错峰等需求。 3)其实简单理解就是一个消息转发器,把一次RPC做成两次RPC。发送者把消息投递到broker,broker再将消息转发一手到接收端。 总结起来就是两次RPC加一次转储,如果要做消费确认,则是三次RPC。 3. 点对点消息队列模型 点对点模型 用于 消息生产者 和 消息消费者 之间 点到点 的通信。 点对点模式包含三个角色: 消息队列(Queue) 发送者(Sender) 接收者(Receiver) 每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,可以放在 内存 中也可以 持久化,直到他们被消费或超时。 特点 每个消息只有一个消费者(Consumer)

How to access Google Chrome's IndexedDB/LevelDB files?

人走茶凉 提交于 2019-12-17 16:15:11
问题 I want to use Google Chrome's IndexedDB to persist data on the client-side. Idea is to access the IndexedDB outside of chrome, via Node.JS, later on. The background is the idea to track usage behaviour locally and store the collected data on the client for later analysis without a server backend. From my understanding, the indexedDB is implemented as a LevelDB. However, I cannot open the levelDB with any of the tools/libs like LevelUp/LevelDown or leveldb-json. I'm always getting this error

《LSM算法原理》

落花浮王杯 提交于 2019-12-13 18:52:41
记内存中的树为T0, 硬盘上的树按时间顺序,记做T1, ..., Tk 读: T0 Tk -> Tk-1 -> ... -> T0 写 T0 T0超过一定大小后,插入硬盘变为Tk+1 复杂度 读:最坏需要读k+1棵树,所以需要定期合并,从而使得只有常数棵树。 写:T0需要O(log)次操作,T0写入硬盘是Append-only的。 比较B+-Tree和LSM-Tree,可以发现对于Scan,前者需要O(logN)次查找,而后者只需要O(k)次(Ti的大小和N无关)。 原理上,无论是B+-Tree还是LSM-Tree都是针对现代存储器的特点而设计的,前者注意利用了Bulk读写,而后者则是力求减少Seek操作,可以说各有侧重。 发布于 2018-10-24 作者:匿名用户 链接:https://www.zhihu.com/question/19887265/answer/517406632 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 LSM的思想,在于对数据的修改增量保持在内存中,达到指定的限制后将这些修改操作批量写入到磁盘中,相比较于写入操作的高性能,读取需要合并内存中最近修改的操作和磁盘中历史的数据,即需要先看是否在内存中,若没有命中,还要访问磁盘文件。 原理:把一颗大树拆分成N棵小树,数据先写入内存中,随着小树越来越大

用python实现新词发现程序——基于凝固度和自由度

我只是一个虾纸丫 提交于 2019-12-12 22:27:49
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> python学习笔记整理于猿人学网站的 python教程 和 python爬虫 互联网时代,信息产生的数量和传递的速度非常快,语言文字也不断变化更新,新词层出不穷。一个好的新词发现程序对做NLP(自然预言处理)来说是非常重要的。 N-Gram加词频 最原始的新词算法莫过于n-gram加词频了。简单来说就是,从大量语料中抽取连续的字的组合片段,这些字组合片段最多包含n个字,同时统计每个字组合的频率,按照词频并设置一个阈值来判断一个字组合片段是否为词汇。 该方法简单处理速度快,它的缺点也很明显,就是会把一些不是词汇但出现频率很高的字组合也当成词了。 凝固度和自由度 这个算法在文章《互联网时代的社会语言学:基于SNS的文本数据挖掘》 里有详细的阐述。 凝固度 就是一个字组合片段里面字与字之间的紧密程度。比如“琉璃”、“榴莲”这样的词的凝固度就非常高,而“华为”、“组合”这样的词的凝固度就比较低。 自由度 就是一个字组合片段能独立自由运用的程度。比如“巧克力”里面的“巧克”的凝固度就很高,和“巧克力”一样高,但是它自由运用的程度几乎为零,所以“巧克”不能单独成词。 Python实现 根据以上阐述,算法实现的步骤如下: 1. n-gram统计字组合的频率 如果文本量很小 ,可以直接用Python的dict来统计n