CVPR 2018 | 商汤科技论文详解:基于空间特征调制的图像超分辨率(很重要!!语义信息加入进去)
在底层视觉算法领域,商汤科技提出的 面向生成更自然真实纹理图像的超分辨率算法 。本文为商汤科技CVPR 2018论文解读第3期。 论文:Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform 作者:Xintao Wang, Ke Yu, Chao Dong, Chen Change Loy 论文链接: https:// arxiv.org/abs/1804.0281 5 Project page: http:// mmlab.ie.cuhk.edu.hk/pr ojects/SFTGAN/ 简介 单帧图像超分辨率旨在基于单张低分辨率图像恢复对应的高分辨率图像。卷积神经网络近年在图像超分辨率任务中表现出了优异的重建效果,但是恢复出自然而真实的纹理依然是超分辨率任务中的一大挑战。 如何恢复出自然而真实的纹理呢?一个有效的方式是考虑语义类别先验,即使用图像中不同区域所属的语义类别作为图像超分辨率的先验条件,比如天空、草地、水、建筑、森林、山、植物等。不同类别下的纹理拥有各自独特的特性,换句话说,语义类别能够更好的约束超分辨中同一低分辨率图存在多个可能解的情况。如图1中展示的建筑和植物的例子,它们的低分辨率图像块非常类似。虽然结合生成对抗式网络(GAN)进行超分复原