DataWhale组队打卡学习营task05-3 卷积神经网络进阶
深度卷积神经网络(AlexNet) LeNet: 在大的真实数据集上的表现并不尽如⼈意。 1.神经网络计算复杂。 2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。 机器学习的特征提取:手工定义的特征提取函数 神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。 神经网络发展的限制:数据、硬件 AlexNet 首次证明了学习到的特征可以超越⼿⼯设计的特征,从而⼀举打破计算机视觉研究的前状。 特征: 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。 将sigmoid激活函数改成了更加简单的ReLU激活函数。 用Dropout来控制全连接层的模型复杂度。 引入数据增强,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。 #目前GPU算力资源预计17日上线,在此之前本代码只能使用CPU运行。 #考虑到本代码中的模型过大,CPU训练较慢, #我们还将代码上传了一份到 https://www.kaggle.com/boyuai/boyu-d2l-modernconvolutionalnetwork #如希望提前使用gpu运行请至kaggle。 import time import torch from torch import nn , optim import torchvision import numpy as np