椒盐噪声

数字图像处理(六)图像降噪处理

坚强是说给别人听的谎言 提交于 2020-03-11 12:41:28
1.噪声 1.1噪声分类 噪声是图像干扰的重要原因。一幅图像在实际应用中可能存在各种各样的噪声,这些噪声可能在传输中产生,也可能在量化等处理中产生。 根据噪声和信号的关系可将其分为三种形式:(f(x,y)表示给定原始图像,g(x,y)表示图像信号,n(x,y)表示噪声。) 1)加性噪声,此类噪声与输入图像信号无关,含噪图像可表示为f(x,y)=g(x,y)+ n(x,y),信道噪声及光导摄像管的摄像机扫描图像时产生的噪声就属这类噪声。 2)乘性噪声,此类噪声 与图像信号有关,含噪图像可表示为f(x,y)=g(x,y)+ n(x,y)g(x,y),飞点扫描器扛描图像时的噪声,电视图像中的相干噪声,胶片中的颗粒噪声就属于此类噪声。 3)量化噪声,此类噪声 与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生。 1.2椒盐噪声 椒盐噪声是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声。椒盐噪声往往由图像切割弓|起。去除脉冲干扰及椒盐噪声最常用的算法是中值滤波。 路面图像属于结构光图像,使用区域分割技术中的阈值分割法消除白噪声及部分椒盐噪声,而不能使用中值滤波对白噪声及椒盐噪声进行滤波,因为滤波模板在图像中漫游时会改变光条中像素的真实灰度分布,给随后的重心法细化过程带来负面影响。 大量的实验研究发现,由摄像机拍摄得到的图像受离散的脉冲

图像的空域滤波增强

你离开我真会死。 提交于 2020-01-26 03:45:56
文章目录 1.噪声与imnoise函数 2.平滑滤波器 3.中值滤波器 4.自适应滤波器 5.锐化滤波器 使用空域模板进行的图像处理,称为图像的空域滤波增强,模板本身称为空域滤波器。空域滤波增强的机理就是在待处理的图像中逐点的移动模板,滤波器在该点的响应通过事先定义的滤波器系数和滤波模板扫过区域的相应像素值的关系来计算。 空域滤波器可以分为平滑滤波器、中值滤波器、自适应除噪滤波器和锐化滤波器。 1.噪声与imnoise函数 图像噪声按照其干扰源可以分为内部噪声和外部噪声。外部噪声,既指系统外部干扰以电磁波或经电源串进系统内部而引起的噪声,如电气设备、天体放电现象等引起的噪声。内部噪声,一般可分为以下4种: (1)由光和电的基本性质所引起的噪声 (2)电器的机械运动产生的噪声 (3)器件材料本身引起的噪声 (4)系统内部设备电路所引起的噪声 按噪声与信号的关系分类,可以将噪声分为加性噪声和乘性噪声两大类。设f(x,y)为信号,n(x,y)为噪声,噪声影响信号后的输出为g(x,y)。表示加性噪声的公式如下: 加性噪声和图像信号强度是不相关的,如运算放大器。图像在传输过程中引进的“信道噪声”,电视摄像机扫描图像的噪声,这类带有噪声的图像g(x,y)可看成理想无噪声图像f(x,y)与噪声n(x,y)之和。形成的波形是噪声和信号的叠加,其特点是n(x,y)和信号无关。如一般的电子线性放大器

计算机视觉OpenCV开源库讲解(图像噪声与图像去噪)

风流意气都作罢 提交于 2020-01-19 02:43:37
图形图像中绝大部分图像都带有一些瑕疵,比如噪声,这会给图像处理带来干扰,OpenCV4中有关于其中噪声的处理函数。 第一,讲解主要常见的噪声种类: 原图: 1.椒盐噪声: 实现代码: 2,高斯噪声: 实现代码: 第二,讲解图像去噪的实现: 中值滤波: 实现代码: 高斯滤波: 实现代码: 注:中值滤波适用于椒盐噪声,不适用于高斯噪声,而高斯滤波适用于高斯噪声,不适用于椒盐噪声。 来源: CSDN 作者: 5cmaini 链接: https://blog.csdn.net/qq_41408585/article/details/103966938