经典的卷积神经网络及其Pytorch代码实现
1.LeNet LeNet是指LeNet-5,它是第一个成功应用于数字识别的卷积神经网络。在MNIST数据集上,可以达到99.2%的准确率。LeNet-5模型总共有7层,包括两个卷积层,两个池化层,两个全连接层和一个输出层。 import torch import torch.nn as nn from torch.autograd import Variable #方形卷积核和等长的步长 m1=nn.Conv2d(16,33,3,stride=2) #非长方形卷积核,非等长的步长和边界填充 m2=nn.Conv2d(16,33,(3,5),stride=(2,1),padding=(4,2)) #非方形卷积核,非等长的步长,边界填充和空间间隔 m3=nn.Conv2d(16,33,(3,5),stride=(2,1),padding=(4,2),dilation=(3,1)) input=Variable(torch.randn(20,16,50,100)) output=m2(input) ####LeNet的PyTorch实现 class LeNet(nn.Module): def __init__(self): super(LeNet,self).__init__() self.conv1=nn.Conv2d(3,6,5) self.conv2=nn.Conv2d(6