IMU与camera标定、Kalibr
目前的研究方向可以总结为在滤波算法中实现高精度,在优化算法中追求实时性.当加入IMU后,研究方向分为松耦合和紧耦合,松耦合分别单独计算出IMU测量得到的状态和视觉里程计得到的状态然后融合,紧耦合则将IMU测量和视觉约束信息放在一个非线性优化函数中去优化.紧耦合的框架使得IMU数据可以对视觉里程计进行矫正,同时视觉里程计信息也可以矫正IMU的零偏,因此一般认为紧耦合的定位精度较高.个人认为松耦合和滤波融合的方法类似,紧耦合则主要基于非线性优化. IMU融合后可以处理视觉失效的情况,例如光照变化,遮挡,模糊,快速运动;同时视觉也可以对IMU的本质误差零偏(漂移)进行很好的估计. 视觉和IMU融合目前主要基于三类方法,在设计时,主要考虑精确度和计算量的平衡. 1. 滤波 状态向量只包含当前状态.由于线性化误差和计算能力的限制,通常只能构建很少的landmark/mappoint.或者创建structureless的状态向量(将landmark/mappoint边缘化),典型代表为MSCKF. 边缘化是将旧状态融合进当前状态的先验中,滤波方法主要的缺陷也就存在于边缘化过程中:首先当前测量的structure信息需要延迟处理,降低当前状态的更新精度,其次边缘化对线性化近似和外点(outlier)都比较敏感,容易造成滤波器状态失准.(这里有很多坑,还不太理解). 2. Fixed-Lag