Sparrow:分布式低延迟调度
1.摘要 大型数据分析框架正在朝着缩短任务执行时间和提高并行度的方向发展来提供低延迟,任务调度器面临的主要挑战是在几百毫秒内完成高度并行的作业调度,这需要在合适的机器上每秒调度数百万个任务,同时提供毫秒级的延迟和高可用性。本文证明了去中心化、随机抽样方法可提供最佳性能,同时避免了中心化设计存在吞吐量和高可用的问题。本文在110台计算机集群上部署Sparrow,并证明Sparrow的性能与理想的调度程序的误差在12%以内。 2.介绍 当今的数据分析集群运行的时间越来越短,作业的任务越来越多。在对低延迟交互式数据处理的需求的刺激下,研究机构和同行业共同努力产生了一些框架(例如Dremel,Spark,Impala)可以在数千台机器上工作,或将数据存储在内存以秒级分析大量数据,如图1所示。预计这种趋势会继续推动开发针对次秒级响应时间的新一代框架响应时间进入100ms左右,这让新的强大的应用程序成为可能;例如,面向用户的服务在每个查询的基础上将能够运行复杂的并行计算,比如语言翻译和高度个性化的搜索。 图1:数据分析框架分析大量数据的延迟非常低 调度由简短的次秒级任务组成的作业极具挑战,这些作业不仅是因为低延迟框架出现的,也有将长时间运行的批处理作业分解为大量短时间任务的原因。当任务以几百毫秒的速度运行时,调度决策必须有很高的吞吐量:一个由10000个16核机器组成的集群并运行100毫秒任务