如何高效快速准确地完成ML任务,这4个AutoML库了解一下
选自TowardsDataScience 作者:Andre Ye 机器之心编译 编辑:陈萍、杜伟 AutoML 是当前深度学习领域的热门话题。只需要很少的工作,AutoML 就能通过快速有效的方式,为你的 ML 任务构建好网络模型,并实现高准确率。简单有效!数据预处理、特征工程、特征提取和特征选择等任务皆可通过 AutoML 自动构建。 图源:https://unsplash.com/photos/pjAH2Ax4uWk 自动机器学习(Automated Machine Learning, AutoML)是一个新兴的领域,在这个领域中,建立机器学习模型来建模数据的过程是自动化的。AutoML 使得建模更容易,并且每个人都更容易掌握。 在本文中,作者详细介绍了四种自动化的 ML 工具包,分别是 auto-sklearn、TPOT、HyperOpt 以及 AutoKeras。如果你对 AutoML 感兴趣,这四个 Python 库是最好的选择。作者还在文章结尾文章对这四个工具包进行了比较。 auto-sklearn auto-sklearn 是一个自动机器学习工具包,它与标准 sklearn 接口无缝集成,因此社区中很多人都很熟悉该工具。通过使用最近的一些方法,比如贝叶斯优化,该库被用来导航模型的可能空间