hog

图像特征提取三大法宝:HOG特征,LBP特征,Haar特征

喜欢而已 提交于 2020-02-07 04:46:25
图像特征提取三大法宝:HOG特征,LBP特征,Haar特征 (一)HOG特征 1、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。 (1)主要思想: 在一副图像中,局部目标的表象和形状(appearance and shape)能够被梯度或边缘的方向密度分布很好地描述。(本质:梯度的统计信息,而梯度主要存在于边缘的地方)。 (2)具体的实现方法是: 首先将图像分成小的连通区域,我们把它叫细胞单元。然后采集细胞单元中各像素点的梯度的或边缘的方向直方图。最后把这些直方图组合起来就可以构成特征描述器。 (3)提高性能: 把这些局部直方图在图像的更大的范围内(我们把它叫区间或block)进行对比度归一化(contrast-normalized),所采用的方法是:先计算各直方图在这个区间(block)中的密度,然后根据这个密度对区间中的各个细胞单元做归一化

图像特征提取之HOG特征

为君一笑 提交于 2020-01-17 08:59:26
目标检测的图像特征提取之(一)HOG特征 zouxy09@qq.com http://blog.csdn.net/zouxy09 1、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。 (1)主要思想: 在一副图像中,局部目标的表象和形状(appearance and shape)能够被梯度或边缘的方向密度分布很好地描述。(本质:梯度的统计信息,而梯度主要存在于边缘的地方)。 (2)具体的实现方法是: 首先将图像分成小的连通区域,我们把它叫细胞单元。然后采集细胞单元中各像素点的梯度的或边缘的方向直方图。最后把这些直方图组合起来就可以构成特征描述器。 (3)提高性能: 把这些局部直方图在图像的更大的范围内(我们把它叫区间或block)进行对比度归一化(contrast-normalized),所采用的方法是:先计算各直方图在这个区间(block)中的密度

HOG:从理论到OpenCV实践

孤人 提交于 2019-12-16 02:57:01
OpenCV HOGDescriptor 参数图解 原文链接 一、理论 1、 HOG特征描述子的定义 : locally normalised histogram of gradient orientation in dense overlapping grids,即局部归一化的梯度方向直方图, 是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征。 2、本质: Histogram of Oriented Gradient descriptors provide a dense overlapping description of image regions ,即 统计图像局部区域的梯度方向信息来作为该局部图像区域的表征。 3、OpenCV中的HOG算法来源: Histograms of Oriented Gradients for Human Detection , CVPR 2005。详细的算法可以参考这个文章。这里是 英文 和 中文 的介绍。 4、 检测窗口Win、块Block、单元格Cell的基本信息 (1)大小: A、检测窗口:WinSize=128*64像素,在图像中滑动的步长是8像素(水平和垂直都是) B、块:BlockSize=16*16像素,在检测窗口中滑动的步长是8像素(水平和垂直都是) C、单元格:CellSize=8*8像素

HOG特征+SVM行人检测

≯℡__Kan透↙ 提交于 2019-12-03 17:33:21
HOG特征+SVM行人检测 API介绍: 1 #include <opencv2/opencv.hpp> 2 #include <iostream> 3 4 using namespace cv; 5 using namespace std; 6 7 int main(int argc, char** argv) { 8 Mat src = imread("L:/opencv_picture/ren4.jpg"); 9 if (src.empty()) { 10 printf("could not load image...\n"); 11 return -1; 12 } 13 namedWindow("input image", CV_WINDOW_AUTOSIZE); 14 imshow("input image", src); 15 16 /* 17 Mat dst, dst_gray; 18 resize(src, dst, Size(64, 128)); 19 cvtColor(dst, dst_gray, COLOR_BGR2GRAY); 20 HOGDescriptor detector(Size(64, 128), Size(16, 16), Size(8, 8), Size(8, 8), 9); 21 22 vector<float> descriptors;

13 opencv人脸识别

孤街浪徒 提交于 2019-12-03 15:46:05
https://www.pyimagesearch.com/2014/11/10/histogram-oriented-gradients-object-detection/ https://yongyuan.name/blog/pedestrian-detection-opencv.html 你知道OpenCV里面已经内置的行人检测方法吗?在OpenCV里面,有一个预先训练好了的HOG+线性SVM模型,能够对图像和视频中的行人进行检测。如果你还不熟悉方向梯度直方图HOG和线性SVM方法,我建议你阅读 方向梯度直方图和物体检测 这篇文章,在这篇文章中,我对该框架分了6步进行讨论。 来源: https://www.cnblogs.com/kekeoutlook/p/11802704.html

Get HOG image features from OpenCV + Python?

匿名 (未验证) 提交于 2019-12-03 02:12:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 由 翻译 强力驱动 问题: I've read this post about how to use OpenCV's HOG-based pedestrian detector: How can I detect and track people using OpenCV? I want to use HOG for detecting other types of objects in images (not just pedestrians). However, the Python binding of HOGDetectMultiScale doesn't seem to give access to the actual HOG features. Is there any way to use Python + OpenCV to extract the HOG features directly from any image? 回答1: If you want fast Python code for HOG features, I've ported the code to Cython: https://github.com/cvondrick/pyvision

How are HoG features represented graphically?

匿名 (未验证) 提交于 2019-12-03 02:05:01
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I'm implementing the Histogram of Oriented Gradient features from "Histograms of oriented gradients for human detection" and I'd like to visualise the result. All papers on these features use a standard visualisation, but I can't find any description of how these are generated. I'd be grateful for an explanation or helpful link. 回答1: The visualizations you see in papers can be interpreted as follows: The descriptor is made up of M*N cells covering the image window in a grid. Each cell is represented by a histogram of edge orientations, where

OpenCV HOGDescripter Python

匿名 (未验证) 提交于 2019-12-03 01:18:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I was wondering if anyone knew why there is no documentation for HOGDescriptors in the Python bindings of OpenCV. Maybe I've just missed them, but the only code I've found of them is this thread: Get HOG image features from OpenCV + Python? If you scroll down in that thread, this code is found in there: import cv2 hog = cv2.HOGDescriptor() im = cv2.imread(sample) h = hog.compute(im) I've tested this and it works -- so the Python Bindings do exist, just the documentation doesn't. I was wondering if anyone knew why documentation for the Python

Improving accuracy OpenCV HOG people detector

匿名 (未验证) 提交于 2019-12-03 01:18:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I'm working in a project. A part of project consist to integrate the HOG people detector of OpenCV with a camera streaming . Currently It's working the camera and the basic HOG detector (CPP detectMultiScale -> http://docs.opencv.org/modules/gpu/doc/object_detection.html ). But don't work very well... The detections are very noising and the algorithm isn't very accuracy... Why? My camera image is 640 x 480 pixels. The snippet code I'm using is: std::vector found, found_filtered; cv::HOGDescriptor hog; hog.setSVMDetector(cv::HOGDescriptor:

HOG Descriptor using Python + OpenCV

匿名 (未验证) 提交于 2019-12-03 01:18:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I am trying to implement HOG Descriptor with OpenCV to detect Pedestrians in a video . I am currently using the pre-made dataset by OpenCV hogcascade_pedestrians.xml . Unfortuntley the documentation on this part is very poor on the internet although the HOG Descriptor is very effective for human detection. I have been writing a code for pedestrians detection with Python, and I have stopped at the following code: import cv2 import numpy as np import imutils VidCap = cv2.VideoCapture('pedestrians.mp4') HOGCascade = cv2.HOGDescriptor(