10分钟大数据Hadoop基础入门
前言 目前人工智能和大数据火热,使用的场景也越来越广,日常开发中前端同学也逐渐接触了更多与大数据相关的开发需求。因此对大数据知识也有必要进行一些学习理解。 基础概念 大数据的本质 一、数据的存储:分布式文件系统(分布式存储) 二、数据的计算:分部署计算 基础知识 学习大数据需要具备Java知识基础及Linux知识基础 学习路线 (1)Java基础和Linux基础 (2)Hadoop的学习:体系结构、原理、编程 第一阶段:HDFS、MapReduce、HBase(NoSQL数据库) 第二阶段:数据分析引擎 -> Hive、Pig 数据采集引擎 -> Sqoop、Flume 第三阶段:HUE:Web管理工具 ZooKeeper:实现Hadoop的HA Oozie:工作流引擎 (3)Spark的学习 第一阶段:Scala编程语言 第二阶段:Spark Core -> 基于内存、数据的计算 第三阶段:Spark SQL -> 类似于mysql 的sql语句 第四阶段:Spark Streaming ->进行流式计算:比如:自来水厂 (4)Apache Storm 类似:Spark Streaming ->进行流式计算 NoSQL:Redis基于内存的数据库 HDFS 分布式文件系统 解决以下问题: 1、硬盘不够大:多几块硬盘,理论上可以无限大 2、数据不够安全:冗余度,hdfs默认冗余为3