gpt-2

大三生获最佳短论文奖,清华狂揽信息检索顶会SIGIR2020多个奖项

天涯浪子 提交于 2020-08-04 11:24:13
  机器之心报道    编辑:魔王、杜伟、小舟    第 43 届国际计算机协会信息检索大会(ACM SIGIR)于本月 25 日举行。昨日,大会公布了最佳论文等奖项。来自清华大学的研究人员获得最佳论文荣誉提名奖、最佳短论文奖奖项。   ACM SIGIR 是信息检索领域的顶级学术会议,今年是第 43 届。据统计,SIGIR 2020 会议共收到投稿 1180 篇,接收 340 篇,接收率为 28.8%。其中长论文投稿 555 篇,接收 147 篇,接收率约为 26%;短文投稿 507 篇,接收 152 篇,接收率约为 30%。      SIGIR 2020 论文词云统计。   昨日,大会公布了最佳论文奖、最佳短论文奖、时间检验奖等奖项。   其中,来自柏林工业大学和康奈尔大学的研究者获得最佳论文奖,来自清华大学的研究者获得最佳论文提名奖。此外,最佳短论文奖和最佳短论文荣誉提名奖也分别出自清华团队。   接下来,我们来看获奖论文的具体内容。    最佳论文奖   SIGIR 2020 最佳论文奖由来自柏林工业大学和康奈尔大学的研究者摘得。      论文作者:Marco Morik(柏林工业大学)、Ashudeep Singh(康奈尔大学)、Jessica Hong(康奈尔大学)、Thorsten Joachims(康奈尔大学)   论文链接:https://dl.acm.org

“万物就只是5万亿个参数”,AI模型GPT-3让人怀疑人生

半腔热情 提交于 2020-08-04 09:37:23
本文转自开源中国 这几天轰动硅谷的 GPT-3 是什么来头? 相信不太了解 AI 的朋友这几天也或多或少看到了一些关于 GPT-3 的重磅消息,甚至有媒体称其为 “继比特币之后又一个轰动全球的现象级新技术”。 请注意,现在站在你面前的是:互联网原子弹,人工智能界的卡丽熙,算力吞噬者,黄仁勋的新 KPI ,下岗工人制造机,幼年期的天网 —— 最先进的 AI 语言模型 GPT-3。 1750 亿参数组成的训练模型 言归正传,OpenAI 的研究人员在上个月发表了一篇论文,描述了 GPT-3 的开发,正式发布了这个由 1750 亿个参数组成的 AI 语言模型。 在 NLP 领域中,通常采用 ELMo 算法的思想,即通过在大量的语料上预训练语言模型,然后再将预训练好的模型迁移到具体的下游NLP任务,从而提高模型的能力。GPT 模型是 OpenAI 在 2018 年提出的一种新的 ELMo 算法模型,该模型在预训练模型的基础上,只需要做一些微调即可直接迁移到各种 NLP 任务中,因此具有很强的业务迁移能力。 GPT 模型主要包含两个阶段。第一个阶段,先利用大量未标注的语料预训练一个语言模型,接着,在第二个阶段对预训练好的语言模型进行微改,将其迁移到各种有监督的 NLP 任务,并对参数进行 fine-tuning。 简而言之,在算法固定的情况下,预训练模型使用的训练材料越多

击败谷歌AI拿下“最强”称号?Facebook AI开源聊天机器人Blender

試著忘記壹切 提交于 2020-05-03 18:20:32
  如今,我们对虚拟语音助手已经十分熟悉。无论是苹果 Siri、亚马逊 Alexa,还是百度小度,阿里巴巴天猫精灵,在提供帮助之余,还经常扮演着被无聊人类调戏的对象。   就在你来我往的博弈之间,语音助手们练就了一身反调戏的本领,甚至还会出其不意,给你惊喜。   但如果把苹果推出 Siri 视为消费级虚拟语音助手诞生元年,算下来迄今已经过了近九年,要说它们没什么长进,恐怕是冤枉了。只不过,跟它们对话似乎总是差点意思。   当然,如果只是指示语音助手设置闹钟,查询天气,它们在绝大多数情况下都能完美实现。然而一旦脱离具体任务,以聊天或咨询为主要目的,因为涉及到对话和交互能力,它们的表现就会一落千丈,经常会出现前言不搭后语的情况,令人沮丧。    为了改善这一问题,Facebook AI 近日就公布了一项最新研究成果:拥有 94 亿参数的开源 AI 聊天机器人 Blender。    Facebook 研究人员声称,Blender 是迄今为止“最先进的”聊天机器人,可以以有趣和连续互动的方式讨论几乎所有内容。 在人-人和 Blender-人的对话比较测试中,有 49% 的测试者把 Blender 的对话记录误认为是人和人的对话,67% 的测试者认为 Blender 和人的对话更像是人和人的对话。      视频|Blender 对话演示(来源:Facebook)   “对话有点像 AI

击败谷歌AI拿下“最强”称号?FacebookAI开源聊天机器人Blender

烂漫一生 提交于 2020-05-03 16:16:04
  如今,我们对虚拟语音助手已经十分熟悉。无论是苹果 Siri、亚马逊 Alexa,还是百度小度,阿里巴巴天猫精灵,在提供帮助之余,还经常扮演着被无聊人类调戏的对象。   就在你来我往的博弈之间,语音助手们练就了一身反调戏的本领,甚至还会出其不意,给你惊喜。   但如果把苹果推出 Siri 视为消费级虚拟语音助手诞生元年,算下来迄今已经过了近九年,要说它们没什么长进,恐怕是冤枉了。只不过,跟它们对话似乎总是差点意思。   当然,如果只是指示语音助手设置闹钟,查询天气,它们在绝大多数情况下都能完美实现。然而一旦脱离具体任务,以聊天或咨询为主要目的,因为涉及到对话和交互能力,它们的表现就会一落千丈,经常会出现前言不搭后语的情况,令人沮丧。    为了改善这一问题,Facebook AI 近日就公布了一项最新研究成果:拥有 94 亿参数的开源 AI 聊天机器人 Blender。    Facebook 研究人员声称,Blender 是迄今为止“最先进的”聊天机器人,可以以有趣和连续互动的方式讨论几乎所有内容。 在人-人和 Blender-人的对话比较测试中,有 49% 的测试者把 Blender 的对话记录误认为是人和人的对话,67% 的测试者认为 Blender 和人的对话更像是人和人的对话。      视频|Blender 对话演示(来源:Facebook)   “对话有点像 AI

大规模计算时代:深度生成模型何去何从

给你一囗甜甜゛ 提交于 2020-04-14 11:14:35
【推荐阅读】微服务还能火多久?>>>    作者 |Chunyuan    编辑 | 丛末   人工智能的核心愿望之一是开发算法和技术,使计算机具有合成我们世界上观察到的数据的能力, 比如自然语言,图片等等。   每当我们建立一个模型来模仿这种能力时,该模型就称为生成模型 (Generative Models)。   如果该模型涉及深度神经网络,则该模型是深度生成模型(Deep Generative Models, 简称 DGMs)。   作为深度学习中自我监督学习 (self-supervised learning)技术的一个分支,DGM特别专注于刻画数据的生成过程。这篇文章回顾了DGM的历史,定义和现状,并分享最新的一些研究结果。最终希望启发大家去思考一个共同的主题:如何在大规模预训练时代推进或应用深度生成模型。    1   历史回顾和基础知识:   三种类型的深度生成模型和一个通用技巧   生成模型(Generatitve Models)在传统机器学习中具有悠久的历史,它经常与另外一个主要方法(判别模型,Discriminative Models)区分开。我们可以通过一个故事学到它们有何不同:有两兄弟,他们具有不同的特殊能力,一个具有深入洞察事物内在的能力,而另一个善于学习所见事物之间的差异。在故事里,前者代表生成模型,而后者代表区分模型,他们的特点总结为:   生成模型

大规模计算时代:深度生成模型何去何从

十年热恋 提交于 2020-04-12 17:04:25
©PaperWeekly 原创 · 作者|Chunyuan Li 单位|Microsoft Research Researcher 研究方向|深度生成模型 人工智能的核心愿望之一是开发算法和技术,使计算机具有合成我们世界上观察到的数据的能力, 比如自然语言,图片等等。 每当我们建立一个模型来模仿这种能力时,该模型就称为 生成模型 (Generative Models)。 如果该模型涉及深度神经网络,则该模型是 深度生成模型 (Deep Generative Models, 简称 DGMs)。 作为深度学习中自我监督学习 (self-supervised learning)技术的一个分支,DGM 特别专注于 刻画数据的生成过程 。这篇文章回顾了 DGM 的历史,定义和现状,并分享最新的一些研究结果。最终希望启发大家去思考一个共同的主题: 如何在大规模预训练时代推进或应用深度生成模型。 历史回顾和基础知识:三种类型的深度生成模型和一个通用技巧 生成模型(Generatitve Models)在传统机器学习中具有悠久的历史,它经常与另外一个主要方法(判别模型,Discriminative Models)区分开。我们可以通过一个故事 [1] 学到它们有何不同:有两兄弟,他们具有不同的特殊能力,一个具有深入洞察事物内在的能力,而另一个善于学习所见事物之间的差异。在故事里,前者代表生成模型