幅度调制

OSI体系结构(一)——物理层详解

我与影子孤独终老i 提交于 2020-03-28 16:19:16
前言 我们知道,虽然OSI协议的实现太过于复杂,几乎没有厂商可以生产出符合该协议的通信产品,但OSI七层模型的体系结构,概念十分清晰,理论也很完整。本文就OSI体系结构来进行介绍和对比。 国际标准化组织除了定义了OSI参考模型外,还开发了实现7个功能层次的各种协议和服务标准,这些协议和服务统称为“OSI协议”。OSI协议是一些已有的协议和OSI新开发的协议的混合体。例如,大部分物理层和数据链路层协议采用的是现有的协议,而数据链路层以上的是由该组织自行起草的。产生OSI协议的目的是提出能满足所有组网需求的国际标准,但到目前为止,实现情况距离这一目标还非常遥远。 虽然OSI协议集缺乏商业动力,但OSI/RM作为网络系统的知识框架,对于学习和理解网络标准还是十分有用的。和其他的协议集一样,OSI协议是实现某些功能过程的描述和说明。每一个OSI协议都详细的规定了特定层次的功能特性。 OSI协议集如下图所示: 下面我们来分别说明7个功能层次的各种协议与各层的功能: 在物理层中,OSI采用了各种现有的协议,其中有RS-232、RS-449、X.21、V.35、ISDN,以及FDDI、IEEE 802.3、IEEE 802.4和IEEE 802.5的物理层协议。 物理层(Physical Layer)是OSI模型中最低的一层,位于OSI参考模型的最底层,它直接面向实际承担数据传输的物理媒体

再次记录IQ坐标

你离开我真会死。 提交于 2020-03-16 02:53:14
在IQ坐标系中,任何一点都确定了一个矢量,可以写为(I + jQ)的形式,数字调制完成后便可以得到相应的I 和 Q 波形,因此数字调制又称为矢量调制。 图1. IQ矢量坐标系 无论是模拟调制,还是数字调制,都是采用调制信号去控制载波信号的三要素: 幅度、频率和相位 ,分别称为调幅、调频和调相。模拟调制称为AM、FM和PM,而数字调制称为ASK、FSK和PSK。数字调制中还有一种调制方式同时包含幅度和相位调制,称为QAM调制(正交幅度调制)。下面将逐一进行介绍。 1. ASK(Amplitude Shift Keying)称为幅移键控,通常指二进制幅移键控2ASK,只对载波作幅度调制, 因此符号映射至IQ坐标系后只有 I 分量 ,而且只有两个状态——幅度A1和A2,如图2所示。一个bit就可以表征两个状态,“0”对应A1,“1”对应A2。即一个状态只包含1 bit信息,故符号速率与比特率相同。类似于模拟AM调制,ASK也具有调制深度的概念,调制深度定义为 图2. 2ASK调制映射星座图 当2ASK的调制深度为100%时,只有比特“1”有信号,比特“0”没有信号,所以称为On-Off Keying,简称为OOK调制。OOK是一种特殊的ASK调制, 调制后的波形为射频脉冲信号。 图3给出了当调制源为 "1001110001101"时,OOK调制之后产生的波形

BPSK调制与解调-MATLAB基带仿真

安稳与你 提交于 2020-01-20 19:05:49
BPSK调制与解调-MATLAB基带仿真 原始发送数据 :随机产生长度为L的0、1序列 BPSK调制方式 : 0 => -1 1 => 1 可以调换映射方式,相应地,解调的映射方式也需修改。 BPSK发送端星座图: BPSK相干解调 : 门限检测:若接收信号幅度大于0,判为1,否则判为0。 理论误比特率: P b = 1 2 e r f c ( E b N 0 ) P_b=\frac{1}{2}erfc(\sqrt{\frac{E_b}{N_0}}) P b ​ = 2 1 ​ e r f c ( N 0 ​ E b ​ ​ ​ ) 仿真结果 : MATLAB基带仿真程序 : clc clear close all % BPSK调制与解调 % % 2019.3.26 % % HIT_KXS % L = 1000000; % 原始数据长度 data = round(rand(1,L)); % 原始数据 send = (data - 1/2) * 2; % BPSK调制 EbN0_dB = 0:12; % Eb/N0 dB形式 EbN0 = 10.^(EbN0_dB/10); % Eb/N0 Eb = 1; % 每比特能量 N0 = Eb ./ EbN0; % 噪声功率 error = zeros(1,length(EbN0_dB)); % 预置错误个数 ber = zeros(1

PWM(Pulse Width Modulation)控制

ε祈祈猫儿з 提交于 2020-01-01 18:03:14
PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值).PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆 变电路中的应用,才确定了它在电力电子技术中的重要地位。 1 PWM相关概念 占空比:就是输出的PWM中,高电平保持的时间 与 该PWM的时钟周期的时间 之比 如,一个PWM的频率是1000Hz,那么它的时钟周期就是1ms,就是1000us,如果高电平出现的时间是200us,那么低电平的时间肯定是800us,那么占空比就是200:1000,也就是说PWM的占空比就是1:5。 分辨率也就是占空比最小能达到多少,如8位的PWM,理论的分辨率就是1:255(单斜率), 16位的的PWM理论就是1:65535(单斜率)。 频率就是这样的,如16位的PWM,它的分辨率达到了1:65535,要达到这个分辨率,T/C就必须从0计数到65535才能达到,如果计数从0计到80之后又从0开始计到80.......,那么它的分辨率最小就是1:80了,但是,它也快了,也就是说PWM的输出频率高了。 双斜率 / 单斜率 假设一个PWM从0计数到80,之后又从0计数到80....... 这个就是单斜率。 假设一个PWM从0计数到80,之后是从80计数到0.....

IQ调制原理

梦想与她 提交于 2020-01-01 09:04:26
  现代通信中,IQ调制基本上属于是标准配置,因为利用IQ调制可以做出所有的调制方式。   但是IQ调制到底是怎么工作的,为什么需要星座映射,成型滤波又是用来干嘛的。这个呢,讲通信原理的时候倒是都会泛泛的提到一下,但由于这部分不好出题,所以通常不会作为重点。但换句话说即使目前国内的大部分讲通信原理的老师,恐怕自己也就是从数学公式上理解了一下。真正的物理上的通信过程是怎么样的,恐怕他们也不理解。所以说到底国内的通信课程,大多都停留在“黑板通信”的程度,稍微好一点的呢,做到的“仿真通信”的程度。离实际的通信工程差距很大。这一方面是由于通信系统确实比较庞大,做真实的实验确实难以实施。另外一方面嘛,呵呵……   所以我决定还是要专门开贴来讲一下这个问题,因为我理解这个问题大概用了两年多的时间,到现在为止恐怕也不能算是完全搞明白了。每思至此,我总是会感慨通信博大精深,要做一名合格的通信工程师是非常不容易的。相反,想成为“专家”仿佛还要简单一点,因为只需要抓住一点穷追猛打,至于其它的么……谁愿意研究谁研究,反正老子不管……   首先从IQ调制讲起吧。所谓的IQ调制,冠冕堂皇的说法无法是什么正交信号如何如何……其实对于IQ调制可以从两个方面来直观的理解,一个是向量,一个是三角函数。首先说一说向量,对于通信的传输过程而言,其本质是完成了信息的传递。信息如何传递?信息本身是无法传递的

Arturia DX7 V for mac(音频编辑器)

半城伤御伤魂 提交于 2019-12-05 19:32:11
相信音乐专业人士对这款Arturia DX7 V for Mac一定不陌生,并且心生敬畏,它造就了八十年代电台金曲和电影配乐的传奇!而 Arturia 的复刻把工作流程最大化的进行简化 —— 更直观的操作界面,更强大的功能,在原版 DX-7 的基础上加入了 Mod Matrix 调制矩阵、自定义 envelopes 包络、更多的波表、2nd LFO、效果器、音序器、琶音等等! https://www.macdown.com Arturia DX7 V for Mac官方介绍 DX7 V精确地模拟了FM数字合成器,它成为了80年代声音的代名词。我们的增强功能增加了所有功能,使新款DX7 V始终具有声音。 1983年,DX7改变了音乐世界。今天,DX7 V让您有能力再次改变它。 没有什么比80年代的声音更像是DX7的声音了。我们真实的娱乐为您提供所有相同的FM数字技术和声音,使该乐器成为键盘和现代音乐历史上的一个受人尊敬的地方。我们并没有停止只是复制它,但我们重新想象它。新的操作波,广泛的调制功能,琶音器和板载FX链以指数方式增强您的声音可能性。对于奖励积分,直观的图形界面使曾经令人生畏的编程任务成为今天的创造性快乐。 我们在乐器上放置了助推器火箭,创造了无数的80年代命中率。现在,您可以创建今天和明天的明确声音。 Arturia DX7 V for Mac软件介绍 Yamaha DX

CDMA与OFDM之技术比较

情到浓时终转凉″ 提交于 2019-12-05 06:06:00
频谱利用率、支持高速率多媒体服务、系统容量、抗多径信道干扰等因素是目前大多数固定宽带无线接入设备商在选择CDMA(码分多址)或OFDM(正交 频分复用)作为点到多点(PMP)的关键技术时的主要出发点。而这两种技术在这些方面都各有所长,因此设备商需要根据实际情况权衡利弊,进行综合分析,从 而做出最佳选择。   CDMA技术是基于扩频通信理论的调制和多址连接技术。OFDM技术属于多载波调制技术,它的 基本思想是将信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各个子载波并行传输。OFDM和CDMA技术各有利弊。CDMA具有众 所周知的优点,而采用多种新技术的OFDM也表现出了良好的网络结构可扩展性、更高的频谱利用率、更灵活的调制方式和抗多径干扰能力。下面主要从调制技 术、峰均功率比、抗窄带干扰能力等角度分析这两种技术在性能上的具体差异。   ——调制技术。一般来说,无线系统中频谱效率可以通过采用16QAM(正交幅度调制)、64QAM乃至更高阶的调制方式得到提高,而且一个好的通信系统应该在频谱效率和误码率之间获得最佳平衡。   在CDMA系统中,下行链路可支持多种调制,但每条链路的符号调制方式必须相同,而上行链路却不支持多种调制,这就使得CDMA系统丧失了一定的灵活性。并且,在这种非正交的链路中,采用高阶调制方式的用户必将会对采用低阶调制的用户产生很大的噪声干扰。  

锁相环(PLL)的工作原理

*爱你&永不变心* 提交于 2019-11-28 02:38:01
http://hi.baidu.com/hieda/blog/item/f87b93240f15a7054c088db9.html 1 .锁相环的基本组成 [部分转贴] 2.锁相环的应用 [1] 锁相环在调制和解调中的应用 [2] 锁相环在调频和解调电路中的应用 [3] 锁相环在频率合成电路中的应用 ================================================================================ 1.锁相环的基本组成 许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。 锁相环路是一种反馈控制电路,简称锁相环(PLL,Phase-Locked Loop)。锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。 因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。 锁相环通常由鉴相器(PD,Phase Detector)、环路滤波器(LF,Loop Filter)和压控振荡器(VCO,Voltage Controlled Oscillator)三部分组成