fft原理

FFT算法的一种FPGA实现

感情迁移 提交于 2020-02-16 03:19:54
http://hi.baidu.com/hieda/blog/item/6afab113b8985127dc540179.html 1 引言   OFDM(正交频分复用)是一种多载波数字调制技术,被公认为是一种实现高速双向无线数据通信的良好方法。在OFDM系统中,各子载波上数据的调制和解调是采用FFT(快速傅里叶变换)算法来实现的。因此在OFDM系统中,FFT的实现方案是一个关键因素。其运算精度和速度必须能够达到系统指标。对于一个有512个子载波,子载波带宽20 kHz的OFDM系统中,要求在50 μs内完成512点的FFT运算。   硬件实现FFT算法的主要方案有:DSP(通用数字信号处理器);FFT专用芯片;FPGA(现场可编程门阵列)。DSP具有纯软件实现的灵活性,适合用于流程复杂的算法,例如在通信系统中的信道编、解码,QAM映射等算法。如果在DSP中完成FFT运算,不仅要占用大量D SP的运算时间,使整个系统的数据吞吐率降低,也无法发挥DSP软件实现的灵活性。因此,前端的FFT运算应由ASIC或FPGA完成。采用专用的FFT处理芯片,虽然速度能达到要求,但其可扩展性差。FPGA具有硬件结构可重构的特点。适合于算法结构固定、运算量大的前端数字信号处理。新近推出的FPGA产品都采用多层布线结构,更低的核心电压,更丰富的IO管脚,容量可达到100 k个逻辑单元(LES)

傅立叶变换的意义

寵の児 提交于 2020-01-20 23:01:55
一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫 Steven W. Smith, Ph.D. 外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下, URL 地址是: http://www.dspguide.com/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是 Jean Baptiste Joseph Fourier (1768-1830) , Fourier 对热传递很感兴趣,于 1807 年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布

数字信号处理专题(3)——FFT运算初探

筅森魡賤 提交于 2019-12-30 01:23:43
一、前言   FFT运算是目前最常用的信号频谱分析算法。在本科学习数字信号处理这门课时一直在想:学这些东西有啥用?公式推来推去的,有实用价值么?到了研究生后期才知道,广义上的数字信号处理无处不在:手机等各种通信设备和WIFI的物理层信号处理、摄像头内的ISP、音频信号的去噪等。各种算法中,FFT是查看信号本质,也就是频谱的重要手段。之前仅直接调用FFT/IFFT IP核,今天深入探讨下算法本身和实现方案。 二、FFT运算原理及结构   本文仅对FFT的核心思想、作用和算法结构进行介绍,FFT具体原理和公式推导详见参考文献。FFT是DFT的快速算法,旨在降低计算复杂度以减小处理延迟和占用的软硬件资源,核心思想是将大点数的DFT运算拆分成多个小点数的DFT运算。因此FFT核心公式与DFT相同。    DFT运算把原始信号采样点与不同的旋转因子做乘累加运算,而旋转因子经过欧拉公式展开后就是角度成倍数关系的正余弦函数。现在DFT在干什么以及怎么干的一目了然:把一段原始信号采样点与不同频率的正余弦信号做“相关运算”,从而找出信号的频率分量。通俗点说就是 通过查看信号与不同频率值正余弦信号的相似程度分析信号本身的频率成分 。工程应用时,了解到这一点就足够了。   有了上述理解,再来看FFT算法

数字信号处理--FFT与蝶形算法

旧街凉风 提交于 2019-12-30 01:22:39
在数字信号处理中常常需要用到离散傅立叶变换(DFT),以获取信号的频域特征。尽管传统的DFT算法能够获取信号频域特征,但是算法计算量大,耗时长,不利于计算机实时对信号进行处理。因此至DFT被发现以来,在很长的一段时间内都不能被应用到实际的工程项目中,直到一种快速的离散傅立叶计算方法——FFT,被发现,离散傅立叶变换才在实际的工程中得到广泛应用。需要强调的是,FFT并不是一种新的频域特征获取方式,而是DFT的一种快速实现算法。本文就FFT的原理以及具体实现过程进行详尽讲解。 DFT计算公式 本文不加推导地直接给出DFT的计算公式: 其中x(n)表示输入的离散数字信号序列,WN为旋转因子,X(k)为输入序列x(n)对应的N个离散频率点的相对幅度。一般情况下,假设x(n)来自于低通采样,采样频率为fs,那么X(k)表示了从-fs/2率开始,频率间隔为fs/N,到fs/2-fs/N截至的N个频率点的相对幅度。因为DFT计算得到的一组离散频率幅度值实际上是在频率轴上从成周期变化的,即X(k+N)=X(k)。因此任意取连续的N个点均可以表示DFT的计算效果,负频率成分比较抽象,难于理解,根据X(k)的周期特性,于是我们又可以认为X(k)表示了从零频率开始,频率间隔为fs/N,到fs-fs/N截至的N个频率点的相对幅度。 N点DFT的计算量 根据(1)式给出的DFT计算公式

多项式fft、ntt、fwt 总结

|▌冷眼眸甩不掉的悲伤 提交于 2019-12-16 06:53:08
做了四五天的专题,但是并没有刷下多少题。可能一开始就对多项式这块十分困扰,很多细节理解不深。 最简单的形式就是直接两个多项式相乘,也就是多项式卷积,式子是$N^2$的。多项式算法的过程就是把卷积做一种变换,在变换后各系数相称得到新系数。其实这一步变换的构造过程挺深奥的,并不是很会。对于多项式卷积的变换就是点值。于是就有了快速变换这样的算法。 细节问题出过很多。边界的问题容易弄错。一般如果是两个N项多项式相乘,得到的是一个$2*N-1$项的多项式,这是存在系数的,只不过一般我们只要N项的结果,所以做fft、ntt的时候总项数从$2*N$开始计算。其实这样解释比较牵强,但是原理的解释我并不清楚,稍感性理解。 多项式卷积应该化成类似i+j=k的形式,其实差值为k也是可以卷积的(翻转一个序列,这样得到的结果序列也是反的)。 fwt处理位运算形式的卷积,同样分治法。位运算是针对下标的,分治的时候考虑好左右两半的子答案的贡献。 多项式全家桶,基础是求导、积分。有时候一些式子不是直接两个相乘得到另一个,可能还要先求出逆元再变回去。这时候用到的就是关于多项式的各种运算。 具体的题目好多是和卷积、“各种数和各种反演”有关,把式子化成卷积形式进行优化。 没有时间写每个题解了,做题也很少,好多东西还没学。这块综合了不少东西,前置内容就有很多。 可能多项式要咕一大截了,难受。 来源: https:/

倒频谱原理与python实现

折月煮酒 提交于 2019-12-09 18:58:16
目录 倒频谱定义 倒频谱python案例 本教程为脑机学习者Rose原创(转载请联系作者授权)发表于公众号:脑机接口社区(微信号:Brain_Computer).QQ交流群:903290195 倒频谱定义 倒频谱可以分析复杂频谱图上的周期结构,分离和提取在密集调频信号中的周期成分,对于具有同族谐频、异族谐频和多成分边频等复杂信号的分析非常有效。倒频谱变换是频域信号的傅立叶积分变换的再变换。时域信号经过傅立叶积分变换可转换为频率函数或功率谱密度函数,如果频谱图上呈现出复杂的周期结构而难以分辨时,对功率谱密度取对数再进行一次傅立叶积分变换,可以使周期结构呈便于识别的谱线形式。第二次傅立叶变换的平方就是倒功率谱,即“对数功率谱的功率谱”。倒功率谱的开方即称幅值倒频谱,简称倒频谱。 简言之,倒频谱分析技术是将时域振动信号的功率谱对数化,然后进行逆傅里叶变化后得到的。倒频谱的水平轴为“倒频率”的伪时间,垂直轴为对应倒频率的幅值,其计算公式为: 倒频谱python案例 实现如下: from scipy.fftpack import fft, fftshift, ifft from scipy.fftpack import fftfreq import numpy as np import matplotlib.pyplot as plt import warnings warnings

SciPy fftpack(傅里叶变换)

☆樱花仙子☆ 提交于 2019-12-03 17:03:36
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy 插值 SciPy 输入输出 SciPy 线性代数 SciPy 图像处理 SciPy 优化 SciPy 信号处理 SciPy 统计 SciPy提供了fftpack模块,包含了傅里叶变换的算法实现。 傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。傅里叶变换把信号从时域变换到频域,以便对信号进行处理。傅里叶变换在信号与噪声处理、图像处理、音频信号处理等领域得到了广泛应用。 如需进一步了解傅里叶变换原理,可以参考相关资料。 快速傅里叶变换 计算机只能处理离散信号,使用离散傅里叶变换(DFT) 是计算机分析信号的基本方法。但是离散傅里叶变换的缺点是:计算量大,时间复杂度太高,当采样点数太高的时候,计算缓慢,由此出现了DFT的快速实现,即快速傅里叶变换FFT。 快速傅里叶变换(FFT)是计算量更小的离散傅里叶变换的一种实现方法,其逆变换被称为快速傅里叶逆变换(IFFT)。 示例 print(fft(np.array([4., 3., 5., 10., 5., 3.]))) 先对数据进行fft变换,然后再ifft逆变换。 import numpy as np

FFT算法的一种FPGA实现

邮差的信 提交于 2019-11-28 02:38:08
http://hi.baidu.com/hieda/blog/item/6afab113b8985127dc540179.html 1 引言   OFDM(正交频分复用)是一种多载波数字调制技术,被公认为是一种实现高速双向无线数据通信的良好方法。在OFDM系统中,各子载波上数据的调制和解调是采用FFT(快速傅里叶变换)算法来实现的。因此在OFDM系统中,FFT的实现方案是一个关键因素。其运算精度和速度必须能够达到系统指标。对于一个有512个子载波,子载波带宽20 kHz的OFDM系统中,要求在50 μs内完成512点的FFT运算。   硬件实现FFT算法的主要方案有:DSP(通用数字信号处理器);FFT专用芯片;FPGA(现场可编程门阵列)。DSP具有纯软件实现的灵活性,适合用于流程复杂的算法,例如在通信系统中的信道编、解码,QAM映射等算法。如果在DSP中完成FFT运算,不仅要占用大量D SP的运算时间,使整个系统的数据吞吐率降低,也无法发挥DSP软件实现的灵活性。因此,前端的FFT运算应由ASIC或FPGA完成。采用专用的FFT处理芯片,虽然速度能达到要求,但其可扩展性差。FPGA具有硬件结构可重构的特点。适合于算法结构固定、运算量大的前端数字信号处理。新近推出的FPGA产品都采用多层布线结构,更低的核心电压,更丰富的IO管脚,容量可达到100 k个逻辑单元(LES)