学术分享丨深度学习在术前手术规划中的应用
随着学会的队伍不断发展壮大,分支机构的发展愈发完善,丰富多彩的分支活动与学术分享也频频呈现。疫情期间,CAAI认知系统与信息处理专委会积极倡导学会“疫情防控不放松,学习充电不间断”的理念,邀请年轻学者结合本专委会自身领域研究精选相关文献进行研究与再解读,与大家分享《深度学习在术前手术规划中的应用》。 外科手术的进步对急性和慢性疾病的管理,延长寿命和不断扩大生存范围都产生了重大影响。如图1所示,这些进步得益于诊断,成像和外科器械的持续技术发展。这些技术中,深度学习对推动术前手术规划尤其重要。手术规划中要根据现有的医疗记录来计划手术程序,而成像对于手术的成功至关重要。在现有的成像方式中,X射线,CT,超声和MRI是实际中最常用的方式。基于医学成像的常规任务包括解剖学分类,检测,分割和配准。 图1:概述了流行的AI技术,以及在术前规划, 术中指导和外科手术机器人学中使用的AI的关键要求,挑战和子区域。 1、分类 分类输出输入的诊断值,该输入是单个或一组医学图像或器官或病变体图像。除了传统的机器学习和图像分析技术,基于深度学习的方法正在兴起[1]。对于后者,用于分类的网络架构由用于从输入层提取信息的卷积层和用于回归诊断值的完全连接层组成。 例如,有人提出了使用GoogleInception和ResNet架构的分类管道来细分肺癌,膀胱癌和乳腺癌的类型[2]