分布式处理

sqoop命令,mysql导入到hdfs、hbase、hive

空扰寡人 提交于 2020-04-08 07:01:00
1.测试MySQL连接 bin/sqoop list-databases --connect jdbc: mysql://192.168.1.187:3306/trade_dev --username 'mysql' --password '111111' 2.检验SQL语句 bin/sqoop eval --connect jdbc: mysql://192.168.1.187:3306/trade_dev --username 'mysql' --password '111111' --query "SELECT * FROM TB_REGION WHERE REGION_ID = '00A1719A489D4F49906A8CA9661CCBE8'" 3.导入hdfs 3.1 导入 bin/sqoop import --connect jdbc: mysql://192.168.1.187:3306/trade_dev --username 'mysql' --password '111111' --table TB_REGION --target-dir /sqoop/mysql/trade_dev/tb_region -m 5 --columns "code,name,category,farthercode,visible,regionlevel,region_id"

hadoop分布式文件系统HDFS学习

∥☆過路亽.° 提交于 2020-04-06 23:21:05
hdfs解决物理计算机存储能力不能满足数据集的要求时遇到的问题,这个系统架构于网络之上,会引入网络编程的复杂性,因此分布式文件系统比普通完成磁盘文件系统更为复杂。 hdfs基于流数据模式访问和处理超大文件的需求而开发的,它可以运行于廉价的商用服务器上,总的来说,可以将 hdfs的主要特点概括为以下几点: (1)处理超大文件 这里指的超大文件通常指数百GB,甚至是数百TB大小的文件。目前在实际应用中,hdfs已经能用来存储管理PB级的数据了。 (2)流式的访问数据 hdfs的设计建立在更多的响应“一次写入,多次读取”任务的基础之上。这意味着一个数据集一旦由数据源生成,就会被复制分发到不同的存储节点中,然后响应各种各样的数据分析任务请求。在多数情况下,分析任务都会涉及数据集中的大部分数据,也就是说对hdfs来说,请求读取整个数据集要比读取一个记录更加高效。 (3)运行在廉价的商用机器集群上 hadoop设计对硬件需求比较低,只需运行在廉价的商用硬件集群上,但廉价商用机也意味着大型集群出现节点故障情况概率高,这就要求在设计hdfs时要充分考虑数据的可靠性,安全性及高可用性。 hdfs在一些方面有一定的局限性,主要在以下几个方面。 (1)不适合低延迟数据访问 如果要处理一些用户要求时间比较短的低延迟应用请求,则hdfs不适合。hdfs是为了处理大型数据集分析任务的

大型网站技术架构——网站架构的伸缩性设计

眉间皱痕 提交于 2020-04-06 22:45:28
首先,所谓网站的伸缩性,指 不需要改变网站的软硬件设计,仅仅通过改变部署的服务器数量就可以扩大或者缩小网站的服务处理能力 。在整个互联网行业的发展渐进演化中,最重要的技术就是 服务器集群 ,通过不断地向集群中添加服务器来增强整个集群的处理能力。 一、网站架构的伸缩性设计 1.1 不同功能进行物理分离实现伸缩   (1)纵向分离:将业务处理流程上得不同部分分离部署,实现系统的伸缩性;   (2)横向分离:将不同的业务模块分离部署,实现系统的伸缩性; 1.2 单一功通过集群规模实现伸缩   使用服务器集群,即将相同服务部署在多台服务器上构成一个集群整体对外提供服务。具体来说,集群伸缩性又分为应用服务器集群伸缩性和数据服务器集群伸缩性。这两种集群对于数据状态管理的不同,技术实现也有很大的区别。  It is said that 当一头牛拉不动车的时候,不要去寻找一头更强壮的牛,而是用两头牛来拉车 。 二、应用服务器集群的伸缩性设计 2.1 应用服务器那点必须知道的事儿   (1)应用服务器应该被设计成 无状态 的,即应用服务器不存储请求上下文信息;构建集群后,每次用户的请求都可以发到集群中任意一台服务器上处理,任何一台服务器的处理结果都是相同的;   (2)HTTP本身是一个无状态的连接协议,为了支持客户端与服务器之间的交互,我们就需要通过不同的技术为交互存储状态

五分钟学后端技术:一篇文章教你读懂大数据技术栈!

青春壹個敷衍的年華 提交于 2020-04-06 08:22:52
作者:网易云 链接: https://www.zhihu.com/question/27696290/answer/381993207 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 什么是大数据 近几年,市场上出现了很多和大数据相关的岗位,不管是数据分析、数据挖掘,或者是数据研发,都是围绕着大数据来做事情,那么,到底什么是大数据,就是我们每一个要学习大数据技术的朋友要了解的事情了,根据百度百科的介绍 大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 [1] 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。 [2] 思维导图 大数据方面核心技术有哪些? 大数据的概念比较抽象,而大数据技术栈的庞大程度将让你叹为观止。 大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算

五分钟学后端技术:如何学习分布式系统和相关技术

倾然丶 夕夏残阳落幕 提交于 2020-04-06 05:21:46
转载自 https://www.cnblogs.com/wetest/p/6806506.html 和 https://www.cnblogs.com/dudu0614/p/8821811.html 什么是分布式系统 分布式这一概念,一直都是后端工程师绕不过去的一个坎,今天,我们就一起来看看到底什么是分布式系统,又有哪些分布式技术世我们需要学习的。 根据百度百科的介绍,分布式系统(distributed system)是建立在网络之上的软件系统。正是因为软件的特性,所以分布式系统具有高度的内聚性和透明性。因此,网络和分布式系统之间的区别更多的在于高层软件(特别是操作系统),而不是硬件。 从分布式系统的诞生说起 我们常常会听说,某个互联网应用的服务器端系统多么牛逼,比如QQ、微信、淘宝。那么,一个互联网应用的服务器端系统,到底牛逼在什么地方?为什么海量的用户访问,会让一个服务器端系统变得更复杂?本文就是想从最基本的地方开始,探寻服务器端系统技术的基础概念。 承载量是分布式系统存在的原因 当一个互联网业务获得大众欢迎的时候,最显著碰到的技术问题,就是服务器非常繁忙。当每天有1000万个用户访问你的网站时,无论你使用什么样的服务器硬件,都不可能只用一台机器就承载的了。因此,在互联网程序员解决服务器端问题的时候,必须要考虑如何使用多台服务器,为同一种互联网应用提供服务,这就是所谓

浅谈分布式集群管理的原理,看看集群究竟是做什么的

◇◆丶佛笑我妖孽 提交于 2020-04-04 09:19:19
本文始发于个人公众号: TechFlow ,原创不易,求个关注 今天是 分布式专题的第11篇 文章,我们一起来聊聊 分布式集群资源管理 。 在开始文章之前,我们先来问一个问题, 为什么是国际上是亚马逊,国内是阿里这两家公司云计算搞得最好呢 ?这两家公司之间有一个巨大的共同点,就是它们都是 电商公司 。电商公司的特点很明显,就是流量不是固定的,往往会受到大促、节日的影响。像是国内的双十一和美国的黑色星期五就是典型的大促。在大促的时候的流量会是平常的十倍甚至更多,这么大的流量必须要有更多的机器去应对。但问题是如果去买这么多机器,但是大促过了,流量下降,那么这些机器就又用不到了,显然就会造成浪费。 那怎么样才能 避免浪费 呢?就是搞一个大集群,把所有机器和计算资源管理起来,大促的时候就用来应对大促的流量,平时呢可以用来搞搞大数据运算或者是租给其他公司或个人,形成一定的经济收益,总是就是 不让这些机器闲着,以免浪费 。 本质上来说,亚马逊和阿里搞云计算、云服务器背后的核心驱动因素之一原因都是为了解决这个问题。 集群资源管理 集群资源管理是分布式非常普遍的应用场景,可以说是无论公司大小都必然有所接触。像是阿里云、亚马逊云说起来很高大上,但是底层也离不开这个。 这个问题的背景非常简单,无论 大小公司往往都不止一套系统 。但是公司的资源是有限的也是固定的,但是我们需要应用机器的场景却是灵活的

大型分布式网站架构设计与实践5

不打扰是莪最后的温柔 提交于 2020-03-28 17:42:30
第5章 数据分析 5.1 日志收集 5.1.1 inotify机制 通过inotify机制,能够对文件系统的变化进行监控,如对文件进行删除,修改等操作,可以及时通知应用程序进行相关事件的处理。 5.1.2 ActiveMQ-CPP C++接口的消息订阅系统 5.1.3 架构和存储 数据需要经过inotify客户端,经由ActiveMQ进行转发,通过storm进行实时处理,再存储到Mysql、HDFS、Hbase或者Memcache这些存储系统当中,最后再进行深度分析或者实时的展现 5.1.4 Chukwa 5.2 离线数据分析 5.2.1 Hadoop项目简介 Hadoop:HDFS,MapReduce,Zookeeper、Hbase、Hive、Pig、Mahout 5.2.2 Hadoop环境搭建 略 5.2.3 MapReduce编写 5.2.4 Hive的使用 略 5.3 流式数据分析 5.3.1 Storm的介绍 1、Storm是一个开源的分布式实时计算系统,可以简单,可靠地对大量的流式数据进行分析。 2、通过zeroMQ作为底层的消息队列,可以保证消息能得到很快的处理 5.3.2 安装部署storm 略 5.3.3 storm的使用 5.4 数据同步 在线的OLTP 或 日志系统-----OLAP系统----->多维度复杂的数据分析和汇总操作 5.4.1 离线数据同步 1

Hadoop1重新格式化HDFS

荒凉一梦 提交于 2020-03-27 06:42:26
首先我们来认识一下HDFS, HDFS(Hadoop Distributed File System )Hadoop分布式文件系统。它其实是将一个大文件分成若干块保存在不同服务器的多个节点中。通过联网让用户感觉像是在本地一样查看文件,为了降低文件丢失造成的错误,它会为每个小文件复制多个副本(默认为三个),以此来实现多机器上的多用户分享文件和存储空间。 Hadoop主要包含三个模块: HDFS模块:HDFS负责大数据的存储,通过将大文件分块后进行分布式存储方式,突破了服务器硬盘大小的限制,解决了单台机器无法存储大文件的问题,HDFS是个相对独立的模块,可以为YARN提供服务,也可以为HBase等其他模块提供服务。 YARN模块:YARN是一个通用的资源协同和任务调度框架,是为了解决Hadoop中MapReduce里NameNode负载太大和其他问题而创建的一个框架。YARN是个通用框架,不止可以运行MapReduce,还可以运行Spark、Storm等其他计算框架。 MapReduce模块:MapReduce是一个计算框架,它给出了一种数据处理的方式,即通过Map阶段、Reduce阶段来分布式地流式处理数据。它只适用于大数据的离线处理,对实时性要求很高的应用不适用。多相关信息可以参考博客: 初识HDFS(10分钟了解HDFS、NameNode和DataNode) 。

保证分布式系统数据一致性的6种方案

冷暖自知 提交于 2020-03-27 04:03:22
https://www.cnblogs.com/soundcode/p/5590710.html 编者按:本文由「高可用架构后花园」群讨论整理而成。 有人的地方,就有江湖 有江湖的地方,就有纷争 问题的起源 在电商等业务中,系统一般由多个独立的服务组成,如何解决分布式调用时候数据的一致性? 具体业务场景如下,比如一个业务操作,如果同时调用服务 A、B、C,需要满足要么同时成功;要么同时失败。A、B、C 可能是多个不同部门开发、部署在不同服务器上的远程服务。 在分布式系统来说,如果不想牺牲一致性,CAP 理论告诉我们只能放弃可用性,这显然不能接受。为了便于讨论问题,先简单介绍下数据一致性的基础理论。 强一致 当更新操作完成之后,任何多个后续进程或者线程的访问都会返回最新的更新过的值。这种是对用户最友好的,就是用户上一次写什么,下一次就保证能读到什么。根据 CAP 理论,这种实现需要牺牲可用性。 弱一致性 系统并不保证续进程或者线程的访问都会返回最新的更新过的值。系统在数据写入成功之后,不承诺立即可以读到最新写入的值,也不会具体的承诺多久之后可以读到。 最终一致性 弱一致性的特定形式。系统保证在没有后续更新的前提下,系统 最终 返回上一次更新操作的值。在没有故障发生的前提下,不一致窗口的时间主要受通信延迟,系统负载和复制副本的个数影响。DNS 是一个典型的最终一致性系统。 在工程实践上

金融信创丨神州信息构建分布式“应用+数据库”体系,树金融信创标杆

℡╲_俬逩灬. 提交于 2020-03-24 16:44:51
3 月,跳不动了?>>> 2019年中国人民银行发布《金融科技(FinTech)发展规划(2019-2021年)》,提出要持续加强分布式数据库领域底层和前沿技术研究,有计划、分步骤地稳步推动分布式数据库产品先行先试,形成可借鉴、能推广的典型案例和解决方案,为分布式数据库在金融领域的全面应用探明路径。 ​ 近期,神州信息再次打造分布式“应用+数据库”典型案例,助推金融信创。其为北京某城商行建设的分布式网贷平台与TiDB分布式数据库完成适配并平稳运行,实现授信客户数近千万,日均渠道数据处理超百万笔,账务交易日处理量数十万笔,日批处理量达百万笔,满足其未来五到十年线上网贷业务发展需求。双方基于分布式技术,携手构建了“分布式应用+分布式数据库”的全行级分布式应用体系,推进该行IT系统由“集中”向“分布”转型,为新形势下业务创新夯实基础,保证金融服务行稳致远。至此,继百信银行分布式核心、天津银行分布式核心、吉林亿联分布式核心等项目后,神州信息金融分布式应用系统基本完成与平凯星辰TiDB、华为GaussDB、阿里OceanBase、百度数据库等国内主流分布式数据库的适配,为国内各商业银行结合自身实际选型、落地分布式数据库提供了有力支撑。 ​神州信息金融科技分布式架构专家薛春雨介绍:“神州信息早在2015年启动分布式应用研发,制定了‘先应用、后架构、再存储’的分布式应用路径,助力银行由‘集中式