学习matlab(四)——概率与数理统计
概率和数理统计是大学数学的重要内容,无论是在科学研究还是在工程实际中都有着非常广泛的应用。在MATLAB中,提供了专门的统计工具箱Staticstics,该工具箱有几百个专用于求解概率和数理统计问题的函数。本章将详细的介绍随机数的产生,随机变量的概率密度函数和数字特征,以及假设检验、方差分析和统计绘图等。 0.随机数 随机数的产生是概率统计的基础,概率论和数理统计就是对各种样本数据进行分析。在MATLAB中,各种样本数据可以用一些经典的随机分布数来表示。下面对常用的二项分布、均匀分布、指数分布、正态分布等随机数据进行详细的介绍。 <1>二项分布随机分布 在MATLAB中,使用函数binornd()产生二项分布的随机数据。该函数的的调用方式如下:R=binornd(N,P):在该函数中N和P为二项分布的两个参数,返回服从参数为N和P的二项分布随机数。R=binornd(N,P,M):在该函数中参数M指定随机数的个数,与返回结果R同维数。 <2>泊松分布 在MATLAB中,使用函数poissrnd()产生泊松分布的随机数据。该函数的调用方式如下:R=poissrnd(LAMBDA):在该函数中LAMBDA为泊松分布的参数,返回服从参数为LAMBDA的泊松分布随机数,其中R与LAMBDA维数相同。R=poissrnd(LAMBDA,M,N):在该函数中LAMBDA为泊松分布的参数