epoll函数

网络IO

匿名 (未验证) 提交于 2019-12-02 23:56:01
大并发服务器设计目标 高性能(High Performance). 要求编写出来的服务器能够最大限度发挥机器性能, 使得机器在满负荷的情况下能够处理尽可能多的并发请求, 对于大量并发请求能够及时快速做出响应 高可用(High Availability). 要求服务器7*24小时服务, 故障转移 伸缩性(Scalability). 服务器具有良好框架, 分层设计, 业务分离, 并且能够进行灵活部署 分布式: 负载均衡 分布式存储 分布式计算 C/S结构: 任何网络系统都可以抽象为C/S结构(客户端, 服务端) 网络I/O+服务器高性能编程技术+数据库 超出数据库连接数: 数据库并发连接数10个, 应用服务器这边有1000个并发请求, 将会有990个请求失败. 解决办法: 增加一个中间层DAL(数据库访问控制层), 一个队列进行排队 超出时限: 数据库并发连接数10个, 数据库1秒钟之内最能处理1000个请求, 应用服务器这边有10000个并发请求, 会出现0-10秒的等待. 如果系统规定响应时间5秒, 则该系统不能处理10000个并发请求, 这时数据库并发能力5000, 数据出现瓶颈. 提高数据库的并发能力 队列+连接池(DAL) 主要逻辑挪到应用服务器处理, 数据库只做辅助的业务处理. 在数据库上进行计算能力或处理处理逻辑不如操作系统效率高. --> 很有限降低数据库的压力,

nginx IO模型

折月煮酒 提交于 2019-12-02 23:27:42
今天下班早些来普及下nginx io模型: 用户空间与内核空间: 现在操作系统都是采用虚拟存储器,那么对32位操作系统而言,它的寻址空间(虚拟存储空间)为4G(2的32次方)。操作系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限。为了保证用户进程不能直接操作内核(kernel),保证内核的安全,操作系统将虚拟空间划分为两部分,一部分为内核空间,一部分为用户空间。针对linux操作系统而言,将最高的1G字节(从虚拟地址0xC0000000到0xFFFFFFFF),供内核使用,称为内核空间,而将较低的3G字节(从虚拟地址0x00000000到0xBFFFFFFF),供各个进程使用,称为用户空间。 进程切换: 为了控制进程的执行,内核必须有能力挂起正在CPU上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。因此可以说,任何进程都是在操作系统内核的支持下运行的,是与内核紧密相关的。 从一个进程的运行转到另一个进程上运行,这个过程中经过下面这些变化: 保存处理机上下文,包括程序计数器和其他寄存器。 更新PCB信息。 把进程的PCB移入相应的队列,如就绪、在某事件阻塞等队列。 选择另一个进程执行,并更新其PCB。 更新内存管理的数据结构。 恢复处理机上下文。 注:总而言之就是很耗资源,具体的可以参考这篇文章: http:/

Socket 编程介绍

谁说胖子不能爱 提交于 2019-12-02 22:52:57
Socket 编程发展 Linux Socket 编程领域,为了处理大量连接请求场景,需要使用非阻塞 I/O 和复用。select、poll 和 epoll 是 Linux API 提供的 I/O 复用方式,自从 Linux 2.6 中加入了 epoll 之后,高性能服务器领域得到广泛的应用,现在比较出名的 Nginx 就是使用 epoll 来实现 I/O 复用支持高并发,目前在高并发的场景下,Nginx 越来越收到欢迎。 据 w3techs 在 2015 年 8 月 10 日的统计数据表明,在全球 Top 1000 的网站中,有 43.7% 的网站在使用 Nginx,这使得 Nginx 超越了 Apache,成为了高流量网站最信任的 Web 服务器足足有两年时间。已经确定在使用 Nginx 的站点有:Wikipedia,WordPress,Reddit,Tumblr,Pinterest,Dropbox,Slideshare,Stackexchange 等,可以持续罗列好几个小时,他们太多了。 下图是统计数据: select 模型 下面是 select 函数接口: int select (int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout); <br> select

20分钟了解Epoll + 聊天室实战

匿名 (未验证) 提交于 2019-12-02 21:56:30
我们知道,计算机的硬件资源由操作系统管理、调度,我们的应用程序运行在操作系统之上,我们的程序运行需要访问计算机上的资源(如读取文件,接收网络请求),操作系统有内核空间和用户空间之分,所以数据读取,先由内核读取数据到内核缓冲区,然后才会从操作系统的内核空间拷贝到用户空间,这个就是缓存I/O,又被称作标准I/O。 几种常见的IO模式:阻塞I/O、非阻塞I/O、I/O多路复用 1、阻塞I/O 用户进程向内核发起I/O系统调用,内核去准备所需的数据,直到数据都准备好了(需要一段时间)返回给用户进程,在这期间,用户进程一直处于阻塞状态,拿到所需数据,才会继续向下执行。 2、非阻塞I/O 用户进程向内核发起I/O系统调用,内核发现数据还没准备好,立即返回error,用户进程拿到error,可以再次向内核发起请求,直到获取所需数据 3、I/O多路复用 下面详细介绍 定义:I/O multiplexing allows us to simultaneously monitor multiple file descriptors to see if I/O is possible on any of them. 传统的阻塞I/O模型可以满足大部分的应用程序使用场景,但有的时候,一些应用程序会 ͬʱ 需要如下特性: 检查文件I/O是否已经ready,如果没有,不阻塞,直接返回 同时监视多个文件描述符

epoll使用详解

匿名 (未验证) 提交于 2019-12-02 21:53:52
Ŀ¼ epoll介绍 Epoll的优点: 1、支持一个进程打开大数目的socket描述符(FD) 2、IO效率不随FD数目增加而线性下降 3、支持边缘触发模式 4、使用mmap加速内核与用户空间的消息传递。 epoll的系统调用 epoll_create epoll_ctl epoll_wait epoll示例程序 epoll的行为与poll(2)相似,监视多个有IO事件的文件描述符。epoll除了提供select/poll那种IO事件的水平触发(Level Triggered)外,还提供了边缘触发(Edge Triggered),这就使得用户空间程序有可能缓存IO状态,减少epoll_wait/epoll_pwait的调用,提高应用程序效率。 epoll_create(2) 创建一个新的epoll实例,并返回一个引用该实例的文件描述符 epoll_ctl(2) 创建epoll实例后,注册对感兴趣的文件描述符。当前注册在epoll实例上的文件描述符集被称为epoll集合。 epoll_wait(2) 等待I/O事件,如果当前没有事件可用,则阻塞调用线程。 水平触发 和 边沿触发 epoll事件分布接口既可以表现为边缘触发(ET),也可以表现为水平触发(LT)。这两种机制的区别 可以这样描述。假设有这种情况发生: 表示管道(rfd)的读侧的文件描述符在epoll实例上注册。

epoll(2) 使用及源码分析的引子

北城余情 提交于 2019-12-02 11:47:30
epoll(2) 使用及源码分析的引子 本文代码取自内核版本 4.17 epoll(2) - I/O 事件通知设施。 epoll 是内核在2.6版本后实现的,是对 select(2)/poll(2) 更高效的改进,同时它自身也是一种文件,不恰当的比方可以看作 eventfd + poll。 多路复用也是一直在改进的,经历的几个阶段 select(2) - 只能关注 1024 个文件描述符,并且范围固定在 0 - 1023,每次函数调用都需要把所有关注的数据复制进内核空间,再对所有的描述符集合进行遍历判断。 poll(2) - 改进 select(2) 前面两个缺点,可以自定义关注的描述符,数量也不受限制(不超过系统的限制),每次调用同样需要复制所有的事件进内核空间,全部遍历。 epoll(2) - 不需要每次调用时所有关注的文件描述符进行内核-用户空间的复制,而是直接将所有的文件描述符和事件常驻内核空间,同时也不需要每次遍历所有文件描述符。 提供的系统调用 #include <sys/epoll.h> typedef union epoll_data { void *ptr; int fd; uint32_t u32; uint64_t u64; } epoll_data_t; struct epoll_event { uint32_t events; /* Epoll

IO复用一select, poll, epoll用法说明

…衆ロ難τιáo~ 提交于 2019-12-02 11:02:21
三种IO复用类型 Select系统调用 #include<sys/select.h> int select(int nfds, fd_set* readfds, fd_set* writefds, fd_set* execptfds,struct timeval* timeout); #nfds表示监听的文件描述符总数; #readfds,writefds,execptfds分别表示对应的fd_set类型的集合 可以如下定义:fd_set readfds,writefds,execptfds #timeout表示select函数的超时时间 Struct timeval { Long tv_sec; Long tv_usec; } 如果timeval成员变量均为0,则select立即返回;如果timeout设置为NULL,则select将一直阻塞,直到某个文件描述符就绪。 # FD_ZERO(fd_set *fdset);清楚fdset的所有位,如FD_ZERO(&readfds); #FD_SET(int fd,fd_set* fdset);设置fdset的位,也就是将某个文件描述符加入到fdset中,如FD_SET(0,&readfds),将标准输入加入到fdset中 #int FD_ISSET(int fd,fd_set * fdset);测试fdset的某个位是否被设置

理解I/O复用

ⅰ亾dé卋堺 提交于 2019-12-02 05:08:59
原文地址 https://blog.csdn.net/xd_rbt_/article/details/80287959 I/O复用就是单个线程通过记录跟踪每一个Sock(I/O流)的状态来同时管理多个I/O流. 假设你是一个机场的空管, 你需要管理到你机场的所有的航线, 包括进港,出港, 有些航班需要放到停机坪等待,有些航班需要去登机口接乘客。 你会怎么做? 最简单的做法,就是你去招一大批空管员,然后每人盯一架飞机, 从进港,接客,排位,出港,航线监控,直至交接给下一个空港,全程监控。 那么问题就来了: 很快你就发现空管塔里面聚集起来一大票的空管员,交通稍微繁忙一点,新的空管员就已经挤不进来了。 空管员之间需要协调,屋子里面就1, 2个人的时候还好,几十号人以后 ,基本上就成菜市场了。 空管员经常需要更新一些公用的东西,比如起飞显示屏,比如下一个小时后的出港排期,最后你会很惊奇的发现,每个人的时间最后都花在了抢这些资源上。 现实上我们的空管同时管几十架飞机稀松平常的事情, 他们怎么做的呢? 他们用这个东西 ·这个东西叫flight progress strip. 每一个块代表一个航班,不同的槽代表不同的状态,然后一个空管员可以管理一组这样的块(一组航班),而他的工作,就是在航班信息有新的更新的时候,把对应的块放到不同的槽子里面。 这个东西现在还没有淘汰哦,只是变成电子的了而已。。

ARTS

青春壹個敷衍的年華 提交于 2019-12-01 18:43:51
每周完成一个 ARTS: Algorithm 来源 LeetCode 438. Find All Anagrams in a String。 Review 分享关于 IO 多路复用之 select,poll,epoll 详解。 Tip 分享 50 行 Python 代码实战,教你用微信每天自动给女朋友说晚安。 Share 分享有关于批判性思维的思考。 一 Algorithm 438. Find All Anagrams in a String 链接 难度:[Eazy] 【题意】 Given a string s and a non-empty string p , find all the start indices of p ‘s anagrams in s . Strings consists of lowercase English letters only and the length of both strings s and p will not be larger than 20,100. The order of output does not matter. Example 1: 123456789 Input:s: "cbaebabacd" p: "abc"Output:[0, 6]Explanation:The substring with start

Linux网络编程三、 IO操作

人盡茶涼 提交于 2019-12-01 07:13:32
  当从一个文件描述符进行读写操作时,accept、read、write这些函数会阻塞I/O。在这种会阻塞I/O的操作好处是不会占用cpu宝贵的时间片,但是如果需要对多个描述符操作时,阻塞会使同一时刻只能处理一个操作,从而使程序的执行效率大大降低。一种解决办法是使用多线程或多进程操作,但是这浪费大量的资源。另一种解决办法是采用非阻塞、忙轮询,这种办法提高了程序的执行效率,缺点是需要占用更多的cpu和系统资源。所以,最终的解决办法是采用IO多路转接技术。   IO多路转接是先构造一个关于文件描述符的列表,将要监听的描述符添加到这个列表中。然后调用一个阻塞函数用来监听这个表中的文件描述符,直到这个表中有描述符要进行IO操作时,这个函数返回给进程有哪些描述符要进行操作。从而使一个进程能完成对多个描述符的操作。而函数对描述符的检测操作都是由系统内核完成的。   linux下常用的IO转接技术有:select、poll和epoll。 select:   头文件:#include <sys/select.h>、#include <sys/time.h>、#include <sys/types.h>、#include <unistd.h>   函数:     int select(int nfds, fd_set *readfds, fd_set *writefds,fd_set