推荐引擎系统架构
本文从互联网收集并整理了推荐系统的架构,其中包括一些大公司的推荐系统框架(数据流存储、计算、模型应用),可以参考这些资料,取长补短,最后根据自己的业务需求,技术选型来设计相应的框架。后续持续更新并收集。。。 界面UI那一块包含3块东西: 1) 通过一定方式展示推荐物品(物品标题、缩略图、简介等); 2) 给的推荐理由; 3) 数据反馈改进个性化推荐; 关于用户数据的存放地方: 1)数据库/缓存用来实时取数据; 2) hdfs文件上面; 抽象出来的三种推荐方式 推荐引擎的构建来源于不同的数据源(也就是用户的特征有很多种类,例如统计的、行为的、主题的)+不同的推荐模型算法,推荐引擎的架构可以试多样化的(实时推荐的+离线推荐的),然后融合推荐结果(人工规则+模型结果),融合方式多样的,有线性加权的或者切换式的等。 A模块负责用户各类型特征的收集,B模块的相关表是根据图3中的推荐引擎来生成的,B模块的输出推荐结果用来C模块的输入,中间经过过滤模块(用户已经产生行为的物品,非候选物品,业务方提供的物品黑名单等),排名模块也根据预设定的推荐目标来制定,最后推荐解释的生成(这是可能是最容易忽视,但很关键的一环,微信的好友推荐游戏,这一解释已经胜过后台的算法作用了) HULU的推荐系统 总结:这个也就跟图3有点类似了,葫芦的推荐系统,至少在他blog中写的比较简单