Softmax回归(Softmax Regression)
转自:http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即 。例如在邮件分类问题中,我们要把邮件分为垃圾邮件、个人邮件、工作邮件3类,目标值y是一个有3个取值的离散值。这是一个多分类问题,二分类模型在这里不太适用。 多分类问题符合 多项分布 。有许多算法可用于解决多分类问题,像决策树、朴素贝叶斯等。这篇文章主要讲解多分类算法中的 Softmax回归(Softmax Regression) 推导思路为:首先证明多项分布属于指数分布族,这样就可以使用广义线性模型来拟合这个多项分布,由广义线性模型推导出的目标函数 即为Softmax回归的分类模型。 证明多项分布属于指数分布族 多分类模型的输出结果为该样本属于k个类别的概率,从这k个概率中我们选择最优的概率对应的类别(通常选概率最大的类别),作为该样本的预测类别。这k个概率用k个变量 , …, 表示。这个k变量和为1,即满足: 可以用前k-1个变量来表示,即: 使用 广义线性模型 拟合这个多分类问题,首先要验证这个多项分布是否符合一个指数分布族。定义T(y)为: 在这里,统计分量T(y)并没有像之前那样定义为T(y)=y,因为T(y)不是一个数值,而是一个k-1维的向量。使用符号 表示向量T(y)的第i个元素。 在这里引入一个新符号: ,如果括号内为true则这个符号取1