度量矩阵

机器学习之降维方法

≯℡__Kan透↙ 提交于 2019-12-26 19:06:05
数据降维的 目的 :数据降维,直观地好处是维度降低了,便于计算和可视化,其更深层次的意义在于有效信息的提取综合及无用信息的摈弃。 数据降维的 好处 :降维可以方便数据可视化+数据分析+数据压缩+数据提取等。 降维方法 __ 属性选择 :过滤法;包装法;嵌入法;       | _ 映射方法 _ 线性映射方法:PCA、LDA、SVD分解等             | _ 非线性映射方法:                       |__核方法:KPCA、KFDA等                       |__二维化:                       |__流形学习:ISOMap、LLE、LPP等。             | __ 其他方法:神经网络和聚类 PCA方法简介   主成分分析的思想,就是线性代数里面的K-L变换,就是在均方误差准则下失真最小的一种变换。是将原空间变换到特征向量空间内,数学表示为Ax=λx。   PCA优缺点:   优点:1)最小误差。2)提取了主要信息   缺点:1)计算协方差矩阵,计算量大 LDA方法简介 (1)LDA核心思想:往线性判别超平面的法向量上投影,使得区分度最大(高内聚,低耦合)。   (2)LDA优缺点:   优点:1)简单易于理解   缺点:2)计算较为复杂 (3)问题 之前我们讨论的PCA、ICA也好,对样本数据来言

[转] 理解矩阵

孤人 提交于 2019-12-03 00:08:41
from: https://www.cnblogs.com/marsggbo/p/10144060.html 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用。大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免太“无厘头”了吧!于是开始有人逃课,更多的人开始抄作业。这下就中招了,因为其后的发展可以用一句峰回路转来形容,紧跟着这个无厘头的行列式的,是一个同样无厘头但是伟大的无以复加的家伙的出场——矩阵来了!多年之后,我才明白,当老师犯傻似地用中括号把一堆傻了吧叽的数括起来,并且不紧不慢地说:“这个东西叫做矩阵”的时候,我的数学生涯掀开了何等悲壮辛酸、惨绝人寰的一幕!自那以后,在几乎所有跟“学问”二字稍微沾点边的东西里,矩阵这个家伙从不缺席。对于我这个没能一次搞定线性代数的笨蛋来说,矩阵老大的不请自来每每搞得我灰头土脸,头破血流。长期以来,我在阅读中一见矩阵,就如同阿Q见到了假洋鬼子