对数曲线

逻辑回归模型

不打扰是莪最后的温柔 提交于 2019-12-30 12:02:19
逻辑回归模型 - zgw21cn - 博客园 逻辑回归模型 1. 逻辑 回 归 模型 1.1逻辑回归模型 考虑具有p个独立变量的向量 ,设条件概率 为根据观测量相对于某事件发生的概率。逻辑回归模型可表示为 (1.1) 上式右侧形式的函数称为称为逻辑函数。下图给出其函数图象形式。 其中 。如果含有名义变量,则将其变为dummy变量。一个具有k个取值的名义变量,将变为k-1个dummy变量。这样,有 (1.2) 定义不发生事件的条件概率为 (1.3) 那么,事件发生与事件不发生的概率之比为 (1.4) 这个比值称为事件的发生比(the odds of experiencing an event),简称为odds。因为0<p<1,故odds>0。对odds取对数,即得到线性函数, (1.5) 1.2极大似然函数 假设有n个观测样本,观测值分别为 设 为给定条件下得到 的概率。在同样条件下得到 的条件概率为 。于是,得到一个观测值的概率为 (1.6) 因为各项观测独立,所以它们的联合分布可以表示为各边际分布的乘积。 (1.7) 上式称为n个观测的似然函数。我们的目标是能够求出使这一似然函数的值最大的参数估计。于是,最大似然估计的关键就是求出参数 ,使上式取得最大值。 对上述函数求对数 (1.8) 上式称为对数似然函数。为了估计能使 取得最大的参数 的值。 对此函数求导,得到p+1个似然方程

matlab 对数坐标

冷暖自知 提交于 2019-12-23 04:47:21
在很多工程问题中,通过对数据进行对数转换可以更清晰地看出数据的某些特征,在对数坐标系中描绘数据点的曲线,可以直接地表现对数转换.对数转换有双对数坐标转换和单轴对数坐标转换两种.用loglog函数可以实现双对数坐标转换,用semilogx和semilogy函数可以实现单轴对数坐标转换. loglog(Y) 表示 x、y坐标都是对数坐标系 semilogx(Y) 表示 x坐标轴是对数坐标系 semilogy(…) 表示y坐标轴是对数坐标系 plotyy 有两个y坐标轴,一个在左边,一个在右边 例1: 用方形标记创建一个简单的loglog. 解: 输入命令 x=logspace(-1,2); loglog(x,exp(x),'-s') grid on %标注格栅 所制图形为: 例2: 创建一个简单的半对数坐标图. 解 输入命令: x=0:.1:10; semilogy(x,10.^x) 所制图形为: 例3: 绘制y=x^3的函数图、对数坐标图、半对数坐标图. 解:在窗口中输入:x=[1:1:100]; subplot(2,3,1); plot(x,x.^3); grid on; title 'plot-y=x^3'; subplot(2,3,2); loglog(x,x.^3); grid on; title 'loglog-logy=3logx'; subplot(2,3,3);

我所经历的大数据平台发展史(四):互联网时代 • 下篇

你。 提交于 2019-12-21 02:38:08
编者按:本文是松子(李博源)的大数据平台发展史系列文章的第四篇(共四篇),本系列以独特的视角,比较了非互联网和互联网两个时代以及传统行业与非传统行业。是对数据平台发展的一个回忆,对非互联网、互联网,从数据平台的用户角度、数据架构演进、模型等进行了阐述。 在互联网时代被弱化的数据模型 谈起数据模型就不得不提传统数据平台架构发展,我相信很多朋友都晓得传统数据平台的知识,其架构演进简单一句话说“基本上可以分为五个时代、四种架构”,但是到了互联网时代因为大数据快速膨胀与数据源类型多样化特点,从高阶架构上来看大约从传统数据平台第三代架构开始延续的,但是往后的发展从我自己的这一点知识上很难对互联网的数据平台做架构归类。 但是从数据平台建设与服务角色上还是有章可循的。就像上篇分享到那样,类比两个行业,互联网企业中员工年龄比非互联网企业的要年轻、受教育程度、对计算机的焦虑程度明显比传统企业要低、还偶遇其它各方面的缘故,导致了数据平台所面对用户群体与非互联网数据平台有所差异化。 传统行业与互联网行业数据平台用户特性我只选择前文章的两张图来表示 (点击放大图像) (点击放大图像) 在传统数据平台要背后有一个完整数据仓库团队去服务业务方,业务方嗷嗷待哺的等待被动方式去满足。中低层数据基本不会对业务方开放,所以不管数据模型采用何种建模方式,主要满足当时数据架构规划即可。

用逻辑回归实现鸢尾花数据集分类(1)

匿名 (未验证) 提交于 2019-12-03 00:19:01
鸢尾花数据集的分类问题指导 -- 对数几率回归(逻辑回归)问题研究 (1) 这一篇Notebook是应用对数几率回归( Logit Regression )对鸢尾花数据集进行品种分类的。首先会带大家探索一下数据集中的特征,类别信息。然后带大家从入门与进阶来学习应用逻辑回归分类。 1.背景介绍 1.1. 逻辑回归 Logistic Regression (对数几率回归 Logit Regression) 名字 关于名字,有文献将Logistic Regression译为“逻辑回归”, 但中文“逻辑”与logitic 和 logit 的含义相去甚远,因此在《机器学习》中意译为“对数几率回归”,简称“对率回归”。 线性回归 在介绍对数几率回归之前先介绍一下线性回归,线性回归的主要思想是通过历史数据拟合出一条直线,因变量与自变量是线性关系,对新的数据用这条直线进行预测。 线性回归的公式如下: y=w0+w1x1+...+wnxn=wTx+b 逻辑回归 对数几率回归是一种广义的线性回归分析模型,是一种预测分析。虽然它名字里带回归,但实际上对数几率回归是一种分类学习方法。它不是仅预测出“类别”, 而是可以得到近似概率预测,这对于许多需要利用概率辅助决策的任务很有用。普遍应用于预测一个实例是否属于一个特定类别的概率,比如一封email是垃圾邮件的概率是多少。 因变量可以是二分类的