对标分析

从原理到落地,七大维度读懂协同过滤推荐算法

感情迁移 提交于 2020-02-04 11:16:54
转载 AI科技大本营 最后发布于2019-08-09 19:52:18 阅读数 195 收藏 展开 作者丨gongyouliu 来源 | 大数据与人工智能 导语:本文会从协同过滤思想简介、协同过滤算法原理介绍、离线协同过滤算法的工程实现、近实时协同过滤算法的工程实现、协同过滤算法应用场景、协同过滤算法的优缺点、协同过滤算法落地需要关注的几个问题等7个方面来讲述。希望读者读完本文,可以很好地理解协同过滤的思路、算法原理、工程实现方案,并且具备基于本文的思路自己独立实现一个在真实业务场景中可用的协同过滤推荐系统的能力。 作者在《 推荐系统产品与算法概述 》这篇文章中简单介绍了协同过滤算法。协同过滤算法是在整个推荐系统发展史上比较出名的算法,具备举足轻重的地位,甚至在当今还在大量使用。本篇文章作者会详细讲解协同过滤推荐算法的方方面面,这里所讲的也是作者基于多年推荐系统研究及工程实践经验的基础上总结而成,希望对大家学习协同过滤推荐算法有所帮助,提供一些借鉴。在正式讲解之前,先做一个简单定义。本文用“ 操作过” 这个词来表示用户对标的物的各种操作行为,包括浏览、点击、播放、收藏、评论、点赞、转发、评分等等。 一、协同过滤思想简介 协同过滤,从字面上理解,包括协同和过滤两个操作。所谓协同就是利用群体的行为来做决策(推荐),生物上有协同进化的说法,通过协同的作用,让群体逐步进化到更佳的状态