如何加速推荐系统?这是个高价值问题
今年的ISCA中有一个Tutorial[2]和三篇论文[3-5],直接和推荐系统的加速有关。以此为起点,本文讨论一下如何加速推荐系统这个问题。推荐系统的优化和加速是一个系统性问题。本文主要围绕Facebook的一些分析和工作,后续可能进行更多的讨论。 我们每打开一个App或者访问一个网站,呈现在我们面前的内容有很大的可能就是推荐系统工作的成果。它们都是推荐系统基于用户和“商品”的各种信息(特征),对用户动作进行预测后推送给我们的。和搜索引擎根据明确的搜索请求返回结果不同,推荐系统是主动去”猜“用户”想要什么“,能够在”信息过载“的情况下,推送最合适的内容,这是一个好的推荐系统能够给用户带来的最大的价值。 而对”商品“提供者来说,推荐系统的价值和重要性也是不言而喻的。引用王喆老师的《深度学习推荐系统》[6]中的例子,2019年天猫”双11“的成交额是2684亿元,而天猫的推荐系统实现了首页商品的个性化推荐,其目标是提高转化率和点击率。假设推荐系统进行了优化, 整体的转化率提高1%,那么增加的成交额大约就是26.84亿 。有这么明确的收益,我们不难想象互联网巨头优化推荐系统的动力。另一个例子是,在ISCA的tutorial[2]中,百度的同学介绍他们为什么在广告推荐系统中使用一个巨大的模型(10TB)而不能进行压缩的时候,给出的原因就是,尝试压缩后的模型会 导致0.1%左右的AUC