点估计

三维点集拟合:平面拟合、RANSAC、ICP算法

蹲街弑〆低调 提交于 2019-12-23 02:54:36
ACM算法分类:http://www.kuqin.com/algorithm/20080229/4071.html;CSDN容易吞图,不过编辑器里面图片还是显示的..... 一: 拟合一个平面:使用SVD分解,代码里面去找吧 空间平面方程的一般表达式为: Ax+By+Cz+D=0; 则有:平面法向量为n=(A,B,C). 第一种方法: 对于空间中n个点(n3) 空间中的离散点得到拟合平面,其实这就是一个最优化的过程。即求这些点到某个平面距离最小和的问题。由此,我们知道一个先验消息,那就是该平面一定会过众散点的平均值。接着我们需要做的工作就是求这个平面的法向量。 根据协方差矩阵的SVD变换,最小奇异值对应的奇异向量就是平面的方向。 注意:这个方法是直接的计算方法,没办法解决数值计算遇到的病态矩阵问题.在公式转化代码之前必须对空间点坐标进行近似归一化! 第二种方法:使用法线方法, 对于空间中n个点(n3),若已获得点云法线 使用合适的方法剔除离群点,计算点云的形心P; 若在已经获得法线的点云中,可以对法线进行剔除离散点之后,求取最小方差的均值,直接求得法线方向N( alpha, beta, theta ); 使用点法式描述三维平面;或者根据形心P和法线方向,计算出平面方程的一般式。 使用法线多次聚类:完成场景平面提取 使用法线两次聚类:第一次根据法线方向进行聚类,使用一个欧式距离约束