3D视觉:一张图像如何看出3D效果?
不同于人类,计算机「看待」世界有自己的方式。为了达到类似人类的视觉水平,各种算法层出不穷,本篇就来窥探其冰山一角。 机器之心原创,作者:陈萍。 我们生活的世界是一个三维物理空间。直观而言,三维视觉系统有助于机器更好地感知和理解真实的三维场景。三维视觉作为计算机视觉的一个比较重要的研究方向,在过去几十年间得到了扎实和系统地发展,形成了一套完整的理论体系。近年来,随着三维成像技术如激光雷达、TOF 相机及结构光等的快速发展,三维视觉研究再次成为研究热点。 在 上一篇文章 中,我们对 3D 视觉基础相关内容进行了概括性总结,本文我们将进行比较深层次的介绍,主要涉及 3D 视觉算法及其应用领域。 3D 目标检测多模态融合算法 基于视觉的目标检测是环境感知系统的重要组成,也是计算机视觉、机器人研究等相关领域的研究热点。三维目标检测是在二维目标检测的基础上,增加目标尺寸、深度、姿态等信息的估计。相比于二维目标检测,三维目标检测在准确性、实时性等方面仍有较大的提升空间。 在目标检测领域,2D 目标检测方面发展迅速,出现了以 R-CNN、Fast RCNN、Mask RCNN 为代表的 two-stage 网络架构,以及以 YOLO、SSD 为代表的 one-stage 网络架构。然而由于 2D 图像缺乏深度、尺寸等物理世界参数信息,在实际应用中存在一定局限性,往往需要结合激光雷达