deepmind lab

完虐"机器人",36核CPU单机,南加大游戏AI在Doom中实现SOTA性能

℡╲_俬逩灬. 提交于 2020-07-25 23:48:33
  机器之心报道    编辑:陈萍、杜伟    训练游戏 AI 往往需要耗费巨量的计算,并且依赖配备数百个 CPU 和 GPU 的服务器。大的科技公司有能力和资金支撑,但学术实验室却「心有余而钱不足」。在本文中,南加州大学和英特尔实验室的研究者展示了在第一人称射击游戏《毁灭战士》中,使用单个高端工作站训练具备 SOTA 性能的游戏 AI,最多时用到了 36 核 CPU 和单个 RTX 2080 Ti GPU 的系统。      我们都清楚,训练 SOTA 人工智能系统往往需要耗费大量的计算资源,这意味着资金雄厚的科技公司的发展进程会远远超过学术团队。但最近的一项研究提出了一种新方法,该方法有助于缩小这种差距,使得科学家可以在单个计算机上解决前沿的 AI 问题。   OpenAI 2018 年的一份报告显示,用于训练游戏 AI 的处理能力正在快速地提升,每 3.4 个月翻一番。其中对数据需求量最大的一种方法是深度强化学习,通过在数百万个模拟中迭代,AI 在反复试错中进行学习。《星际争霸》和《Dota2》等电子游戏领域取得了令人瞩目的新进展,但都依赖封装了数百个 CPU 和 GPU 的服务器。   针对这种情况,Cerebras System 开发的 Wafer Scale 引擎能够使用单个大芯片来替换这些处理器,这个芯片为训练 AI 进行了完美的优化。但是由于价格高达数百万