dbn

nolearn for multi-label classification

帅比萌擦擦* 提交于 2019-12-01 11:46:28
I tried to use DBN function imported from nolearn package, and here is my code: from nolearn.dbn import DBN import numpy as np from sklearn import cross_validation fileName = 'data.csv' fileName_1 = 'label.csv' data = np.genfromtxt(fileName, dtype=float, delimiter = ',') label = np.genfromtxt(fileName_1, dtype=int, delimiter = ',') clf = DBN( [data, 300, 10], learn_rates=0.3, learn_rate_decays=0.9, epochs=10, verbose=1, ) clf.fit(data,label) score = cross_validation.cross_val_score(clf, data, label,scoring='f1', cv=10) print score Since my data has the shape(1231, 229) and label with the shape

nolearn for multi-label classification

老子叫甜甜 提交于 2019-12-01 08:38:38
问题 I tried to use DBN function imported from nolearn package, and here is my code: from nolearn.dbn import DBN import numpy as np from sklearn import cross_validation fileName = 'data.csv' fileName_1 = 'label.csv' data = np.genfromtxt(fileName, dtype=float, delimiter = ',') label = np.genfromtxt(fileName_1, dtype=int, delimiter = ',') clf = DBN( [data, 300, 10], learn_rates=0.3, learn_rate_decays=0.9, epochs=10, verbose=1, ) clf.fit(data,label) score = cross_validation.cross_val_score(clf, data,

机器学习算法

旧城冷巷雨未停 提交于 2019-11-27 10:19:00
文章目录 一 监督学习 1 classification分类 (1) Binary Decision Tree(BDT)二分决策树 (2) Naive Bayesian Classifier朴素贝叶斯分类器 (3) Neural Network(NN)神经网络 (4)Convolution NN(CNN)卷积神经网络 (5)Deep Belief Networks(DBN)深度信念网络 (6)Recurrent NN(RNN)深度循环神经网络 2 regression回归 (1)LinearRegression线性回归: (2)树回归: 二 强化学习 1 Q-learning 2 Deep Q Networks 3 Double Q-learning 4 Prioritized experience replay 三 无监督学习 1 Dimensionality Reduction降维 (1)Stacked Auto-Encoders(SAE)栈式自编码 (2)Local Linear Embedding局部线性嵌入 2 Clustering聚类 (1)聚类算法简介 (2)聚类算法分类 (3)KMeans算法 (4)层次聚类(hierarchical clustering) (5) DBSCAN(基于密度的聚类算法) 3 Density Estimation密度估计 一 监督学习