conceptnet

KDD 2020 | 会话推荐系统新进展:基于互信息最大化的多知识图谱语义融合

徘徊边缘 提交于 2021-02-13 08:35:06
论文标题: Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion 论文来源: ACM SIGKDD 2020 论文链接: https://arxiv.org/abs/2007.04032 会话推荐系统(conversation recommender system, CRS)旨在通过交互式的会话给用户推荐高质量的商品。通常CRS由寻求商品的user和推荐商品的system组成,通过交互式的会话,user实时表达自己的意图,system理解user的偏好并推荐商品。目前会话推荐系统有两个问题需要解决。首先,对话数据本身缺少足够的上下文信息,无法准确地理解用户的偏好(传统的推荐任务会有历史交互序列或者用户属性,但是该场景下只有对话的记录)。其次,自然语言的表示和商品级的用户偏好之间存在语义鸿沟(在“Can you recommend me a scary movie like Jaws”中,用户偏好反映在单词”scary“和电影实体”Jaws“上,但这两类信息天然存在语义的差异)。 为了解决上述问题,本文提出了模型 KG -based S emantic F usion approach(KGSF),通过互信息最大化的多知识图谱语义融合技术

综述 | 知识图谱技术综述(上)

百般思念 提交于 2020-12-06 18:32:47
题目:知识图谱技术综述 作者:徐增林,盛泳潘,贺丽荣,王雅芳 摘 要 知识图谱技术 是人工智能技术的重要组成部分,其建立的具有 语义处理 能力与 开放互联 能力的 知识库 ,可在 智能搜索、智能问答、个性化推荐 等智能信息服务中产生应用价值。 该文在全面阐述知识图谱定义、架构的基础上,综述知识图谱中的 知识抽取、知识表示、知识融合、知识推理 四大核心技术 的研究进展以及一些典型应用。该文还将评论当前研究存在的挑战。 关 键 词: 知识融合; 知识图谱技术; 知识表示; 开放互联; 语义处理 目录 0 导 读 1 知识图谱的定义与架构 1.1 知识图谱的定义 1.2 知识图谱的架构 2 大规模知识库 2.1 开放链接知识库 2.2 垂直行业知识库 3 知识图谱的关键技术 3.1 知识抽取 3.2 知识 表示 3.3 知识融合 3.4 知识推理 4 知识图谱的典型应用 4.1 智能搜索 4.2 深度问答 4.3 社交网络 4.4 垂直行业应用 5 知识图谱的挑战 5.1 知识获取 5.2 知识表示 5.3 知识融合 5.4 知识应用 6 结束语 7 参考文献 0.导读 人类先后经历了以文档互联为主要特征的“ Web 1.0 ”时代与数据互联为特征的“ Web 2.0 ”时代,正在迈向基于知识互联的崭新“ Web 3.0 ”时代 [1] 。 知识图谱 (knowledge graph)

综述 | 知识图谱技术综述(下)

孤街浪徒 提交于 2020-12-06 05:59:05
题目:知识图谱技术综述 作者:徐增林,盛泳潘,贺丽荣,王雅芳 摘 要 知识图谱技术 是人工智能技术的重要组成部分,其建立的具有 语义处理 能力与 开放互联 能力的 知识库 ,可在 智能搜索、智能问答、个性化推荐 等智能信息服务中产生应用价值。 该文在全面阐述知识图谱定义、架构的基础上,综述知识图谱中的 知识抽取、知识表示、知识融合、知识推理 四大核心技术 的研究进展以及一些典型应用。该文还将评论当前研究存在的挑战。 关 键 词: 知识融合; 知识图谱技术; 知识表示; 开放互联; 语义处理 目录 0 导 读 1 知识图谱的定义与架构 1.1 知识图谱的定义 1.2 知识图谱的架构 2 大规模知识库 2.1 开放链接知识库 2.2 垂直行业知识库 3 知识图谱的关键技术 3.1 知识抽取 3.2 知识 表示 3.3 知识融合 3.4 知识推理 4 知识图谱的典型应用 4.1 智能搜索 4.2 深度问答 4.3 社交网络 4.4 垂直行业应用 5 知识图谱的挑战 5.1 知识获取 5.2 知识表示 5.3 知识融合 5.4 知识应用 6 结束语 7 参考文献 3.知识图谱的关键技术 前文回顾 3.1 知识抽取 3.1.1 实体抽取 1) 基于规则与词典的实体抽取方法 2) 基于统计机器学习的实体抽取方法 3) 面向开放域的实体抽取方法 3.1.2 关系抽取 1) 开放式实体关系抽取 2

IJCAI2020|Mucko:面向视觉问答的多层次跨模态知识推理模型

你说的曾经没有我的故事 提交于 2020-08-16 06:52:07
     本文介绍的是 IJCAI-2020论文《Mucko: Multi-LayerCross-Modal Knowledge Reasoning for Fact-based Visual Question Answering》,该论文由中科院信工所于静老师指导,由来自中科院信工所、微软亚洲研究院、阿德莱德大学的作者(朱梓豪,于静,汪瑜静,孙雅静,胡玥,吴琦)合作完成。    作 者 | 朱梓豪    编辑 | 丛 末      代码链接:https://github.com/astro-zihao/mucko    1    介绍   视觉问答是一个融合了计算机视觉和自然语言处理的跨领域研究方向,输入一张图像和与这个图像有关的自然语言问题,视觉问答算法的目标是生成一个自然语言答案作为输出。最近一些相关工作,仅仅通过分析图像中的视觉内容和问题,在一些数据集上就已经得到了很好的结果。但是,当一个问题不仅仅需要分析视觉内容,还需要依赖额外的知识才能回答时,这些模型就无能为力了。   例如在图一中,问题是“图片中红色的圆柱体可以用来做什么”?模型首先需要在视觉上定位出“红色的圆柱体”在哪,还需要在语义上将“红色的圆柱体”识别为“消防栓”,而且还需要连接到“消防栓可以用来灭火”这条外部知识。因此,如果要建立一个通用的视觉问答模型,学习如何从视觉、语义