Focal Loss for Dense Object Detection - 1 - 论文学习
Abstract 迄今为止,精确度最高的目标探测器是基于R-CNN推广的两阶段方法,其中分类器应用于稀疏的候选对象位置集合。相比之下,对可能的目标位置进行常规、密集采样的单级探测器有可能更快、更简单,但迄今仍落后于两阶段探测器的精度。在这篇文章中,我们研究为什么会这样。我们发现,在高密度探测器的训练过程中所遇到的极度前、后级不平衡是其主要原因。我们建议通过重塑标准的交叉熵损失来解决这类不平衡,这样它就可以降低分类良好的例子的损失。我们的新Focal loss损失集中在一组稀疏的困难例子的训练,并防止训练期间大量的容易检测的负样本压倒探测器。为了评估损失的有效性,我们设计并训练了一个简单的高密度探测器,我们称之为RetinaNet。我们的结果表明,当使用Focal loss训练时,RetinaNet能够达到以前单阶段探测器的速度,同时超过所有现有的最先进的两阶段探测器的精度。代码是:https://github.com/facebookresearch/Detectron. 1. Introduction 目前最先进的目标探测器是基于一个两阶段,proposal驱动的机制。正如R-CNN框架[11]所推广的那样,第一阶段生成一组稀疏的候选对象位置,第二阶段使用卷积神经网络将每个候选位置分类为前景类或背景类。通过一系列的改进[10,28,20,14]